I made stickman lore
superplayday (in 2023)
0 to never part 29/50
1 to Absolute infinity part 3/100
Trying to find green screen kids to make fractals
Just helping green screen adults to remix the video
Helping everything
Helping the fractal formula
Helping the people commenting
1ā
ļø
5ā
ļø
100ā
ļø
1000ā
ļø
3000ā
ļø
4000ā
ļø
5000ā
ļø
10,000āļø
25,000āļø
74,500āļø
180,000āļø
314,159āļø
628,000āļø
Sub me or you will have a bad day
2048:
Has been reached 10^10000000
2048 Tile Very Big Power Morph
Rules: no unsub me, no 2nd or more than place of sub (more subscribers than mrbeast)
Number blocks youtube.com/shorts/_MI0ak7HfI4?si=dAgsMzlDC2HiI2cb
Rules: no grounding me, no terminated me.
Best calculator: s.castle.xyz/S5B2pyjDlPv6
subscribe for a burger š
+ I'm a video effect creator
stickman lore Official š | 2048 / 0 to ????? Inf
Arctanget calculator: (copy-paste)
https://www.desmos.com/calculator/5dvms4c5xb
2 weeks ago (edited) | [YT] | 0
View 0 replies
stickman lore Official š | 2048 / 0 to ????? Inf
My masterpiece
Sin(2x)=?
2x=x+x
sin(x+x)
Sin(a+b)=?
sin(a+b)
b=ci
sin(a+ci)
(e^(a+ci)i-e^-(a+ci)i)/2i
(e^(-c+ai)-e^(c-ai))/2i
(e^-c * e^ai - e^c * e^-ai)/2i
Pt 1
e^-c * e^ai
e^-c * (cos(a)+sin(a)i)
cos(a)e^-c + isin(a)e^-c
Pt 2
e^c * e^-ai
e^c * (cos(a)-sin(a)i)
cos(a)e^c - isin(a)e^c
Pt 3
(cos(a)e^-c + isin(a)e^-c)-(cos(a)e^c - isin(a)e^c)
(cos(a)e^-c - cos(a)e^c)+ i(sin(a)e^-c + sin(a)e^c)
Pt 4
(cos(a)e^-c - cos(a)e^c) + i(sin(a)e^-c + sin(a)e^c) we want this to divide by 1/2i we know that 1/i=-i
Pr 5
i(cos(a)e^-c - cos(a)e^c) + i²(sin(a)e^-c + sin(a)e^c)
(-sin(a)e^-c - sin(a)e^c) + i(cos(a)e^-c - cos(a)e^c)
Pt 6
-(-sin(a)e^-c - sin(a)e^c) - i(cos(a)e^-c - cos(a)e^c)
(sin(a)e^-c + sin(a)e^c) + i(cos(a)e^c - cos(a)e^-c)
Pt 7
(sin(a)e^-c + sin(a)e^c)/2 + i(cos(a)e^c - cos(a)e^-c)/2
Pt 8
sin(a)(e^-c + e^c)/2 + icos(a)(e^c - e^-c)/2
sin(a)cosh(c) + icos(a)sinh(c)
Pt 9
b=ci
b/i=c
c=-bi
sin(a)cosh(-bi) + icos(a)sinh(-bi)
sin(a)cosh(bi) - icos(a)sinh(bi)
sinh(bi)=(e^bi - e^-bi)/2=isin(b)
cosh(bi)=(e^bi + e^-bi)/2=cos(b)
sin(a)cos(b) - icos(a)isin(b)
sin(a)cos(b) + cos(a)sin(b)
Part 10
Subsitute a=x, b=x
sin(x)cos(x) + cos(x)sin(x)
Sin(2x)=2sin(x)cos(x)
1 month ago (edited) | [YT] | 1
View 0 replies
stickman lore Official š | 2048 / 0 to ????? Inf
Well in that case
2 months ago | [YT] | 0
View 0 replies
stickman lore Official š | 2048 / 0 to ????? Inf
Cbrt(x) of a complex numbers
DEEDE
Do some expansion
(a+bi)³=a³+3a²bi-3ab²-b³i=(a³-3ab²)+(3a²b-b³)i
(a³-3ab²)=c, (3a²b-b³)=d
(a³-3ab²)=c
Lets act c as a constant
a(a²-3b²)=c
(a²-3b²)=c/a
(-3b²)=c/a - a²
(b²)=(a² - c/a)/3
(b)=sqrt((a² - c/a)/3)
(3a²sqrt((a² - c/a)/3)-sqrt((a² - c/a)/3)³)=d
(3a²sqrt((a² - c/a)/3)-sqrt((a² - c/a)/3)³)=d
[(a² - c/a)/3] * [(8a² + c/a)² / 9] = d²
(a²/3 - c/a) * (a²/3 - c/a - 3a²)² = d²
(a²/3 - c/a) * (a²/3 - c/a - 3a²)² = d²
64aā¶/27 - 16a³c/3 - 5c² - c³/a³ = d²
64aā¹/27 - 16aā¶c/3 - 5c²a³ - c³ = d²a³
t=a³
64t³/27 - 16t²c/3 - 5c²t - t = d²t
64t³/27 - 16t²c/3 - (5c²-d²)t - t =0
64t³/27 - 16t²c/3 - (5c²-d²-1)t=0
(64/27)x³+(-9c²+d²+1)x+1/4(-23c³+3cd²+3c)
t=x+3c/4
(64/27)x³+(-9c²+d²+1)x+1/4(-23c³+3cd²+3c)
x=Cbrt((27/512)(23c³-3cd-3c)+sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)) + Cbrt((27/512)(23c³-3cd-3c)-sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)), (omegaCbrt((27/512)(23c³-3cd-3c)+sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)) + omega²Cbrt((27/512)(23c³-3cd-3c)-sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³))), (omega²Cbrt((27/512)(23c³-3cd-3c)+sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)) + omegaCbrt((27/512)(23c³-3cd-3c)-sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³))
t=((Cbrt((27/512)(23c³-3cd-3c)+sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)) + Cbrt((27/512)(23c³-3cd-3c)-sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³))))-3c/4, (omegaCbrt((27/512)(23c³-3cd-3c)+sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)) + omega²Cbrt((27/512)(23c³-3cd-3c)-sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)))-3c/4, (omega²Cbrt((27/512)(23c³-3cd-3c)+sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)) + omegaCbrt((27/512)(23c³-3cd-3c)-sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)))-3c/4
a=cbrt(((Cbrt((27/512)(23c³-3cd-3c)+sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)) + Cbrt((27/512)(23c³-3cd-3c)-sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³))))-3c/4), cbrt((omegaCbrt((27/512)(23c³-3cd-3c)+sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)) + omega²Cbrt((27/512)(23c³-3cd-3c)-sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)))-3c/4), cbrt((omega²Cbrt((27/512)(23c³-3cd-3c)+sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)) + omegaCbrt((27/512)(23c³-3cd-3c)-sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)))-3c/4)
(b)=sqrt(((cbrt(((Cbrt((27/512)(23c³-3cd-3c)+sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)) + Cbrt((27/512)(23c³-3cd-3c)-sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³))))-3c/4))² - c/(cbrt(((Cbrt((27/512)(23c³-3cd-3c)+sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)) + Cbrt((27/512)(23c³-3cd-3c)-sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³))))-3c/4)))/3), sqrt(((cbrt((omegaCbrt((27/512)(23c³-3cd-3c)+sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)) + omega²Cbrt((27/512)(23c³-3cd-3c)-sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)))-3c/4))² - c/(cbrt((omegaCbrt((27/512)(23c³-3cd-3c)+sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)) + omega²Cbrt((27/512)(23c³-3cd-3c)-sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)))-3c/4)))/3), sqrt(((cbrt((omega²Cbrt((27/512)(23c³-3cd-3c)+sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)) + omegaCbrt((27/512)(23c³-3cd-3c)-sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)))-3c/4))² - c/(cbrt((omega²Cbrt((27/512)(23c³-3cd-3c)+sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)) + omegaCbrt((27/512)(23c³-3cd-3c)-sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)))-3c/4)))/3)
------------------------------
Cbrt((c,d))=((cbrt(((Cbrt((27/512)(23c³-3cd-3c)+sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)) + Cbrt((27/512)(23c³-3cd-3c)-sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³))))-3c/4)),(sqrt(((cbrt(((Cbrt((27/512)(23c³-3cd-3c)+sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)) + Cbrt((27/512)(23c³-3cd-3c)-sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³))))-3c/4))² - c/(cbrt(((Cbrt((27/512)(23c³-3cd-3c)+sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)) + Cbrt((27/512)(23c³-3cd-3c)-sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³))))-3c/4)))/3))), ((cbrt((omegaCbrt((27/512)(23c³-3cd-3c)+sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)) + omega²Cbrt((27/512)(23c³-3cd-3c)-sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)))-3c/4)),(sqrt(((cbrt((omegaCbrt((27/512)(23c³-3cd-3c)+sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)) + omega²Cbrt((27/512)(23c³-3cd-3c)-sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)))-3c/4))² - c/(cbrt((omegaCbrt((27/512)(23c³-3cd-3c)+sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)) + omega²Cbrt((27/512)(23c³-3cd-3c)-sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)))-3c/4)))/3))), ((cbrt((omega²Cbrt((27/512)(23c³-3cd-3c)+sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)) + omegaCbrt((27/512)(23c³-3cd-3c)-sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)))-3c/4)),(sqrt(((cbrt((omega²Cbrt((27/512)(23c³-3cd-3c)+sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)) + omegaCbrt((27/512)(23c³-3cd-3c)-sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)))-3c/4))² - c/(cbrt((omega²Cbrt((27/512)(23c³-3cd-3c)+sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)) + omegaCbrt((27/512)(23c³-3cd-3c)-sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)))-3c/4)))/3)))
2 months ago | [YT] | 0
View 0 replies
stickman lore Official š | 2048 / 0 to ????? Inf
youtube.com/shorts/560agcaBVz...
Now āŖ@camman18⬠is forsaken
2 months ago | [YT] | 0
View 0 replies
stickman lore Official š | 2048 / 0 to ????? Inf
Linear
ax+b=0
ax=-b
x=-b/a
Quadradic
Ax²+bx+c
x²+(b/a)x+(c/a)=0
Substitute x=y-h
A(y-h)²+b(y-h)+c what h make linear coefficient 0 is b/2a
So we Substitute x=y-(b/2a)
This looks like something
(y-(b/2a))²+(b/a)(y-(b/2a))+(c/a)
y²+(4ac-b²)/(4a²)=0
y²=-(4ac-b²)/(4a²)
y=±sqrt(-(4ac-b²)/(4a²))
y=±sqrt(-(4ac-b²))/2a
y=sqrt((b²-4ac))/2a
x=y-(b/2a)->x+(b/2a)=y
x+b/2a=±sqrt((b²-4ac))/2a
x=(-b±sqrt((b²-4ac)))/2a
Cubics
Cubic formula
ax³+bx²+cx+d=0
x=y-b/3a
Expanding it gives us x³+px+q for p=(c - b²/3a), q=((2b³-9abc+27a²d)/27a²)
x³+px+q=0
x³+px+q=0
(a+b)³=a³+3ab(a+b)+b³
x=u+v
(u+v)³+px+q=0
(a+b)³-3ab(a+b)=a³+b³
(u+v)³+p(u+v)+q=0
(u+v)³+p(u+v)=-q
a=u, b=v
(a+b)³+p(a+b)=-q
a³+b³=-q
3ab=p -> ab=p/3
ab=p/3
a³b³=p³/27
K=a³, L=b³
K+L=-q, KL=p³/27
(-q/2+B)+(-q/2-B)=-q
(-q/2+B)(-q/2-B)=p³/27
-q²/4 - B²=p³/27
B² - q²/4=-p³/27
B²=-p³/27 + q²/4
B=sqrt(-p³/27 + q²/4)
K=-q/2+sqrt(-p³/27 + q²/4)
L=-q/2-sqrt(-p³/27 + q²/4)
Quadradic formula form
K=(-q+sqrt(-4p³/27 + q²))/2
L=(-q-sqrt(-4p³/27 + q²))/2
And
a³=(-q+sqrt(-4p³/27 + q²))/2
b³=(-q-sqrt(-4p³/27 + q²))/2
For
a=cbrt((-q+sqrt(-4p³/27 + q²))/2)
b=cbrt((-q-sqrt(-4p³/27 + q²))/2)
It thr
u=cbrt((-q+sqrt(-4p³/27 + q²))/2)
v=cbrt((-q-sqrt(-4p³/27 + q²))/2)
frst root of depressed
x=cbrt((-q+sqrt(-4p³/27 + q²))/2)+cbrt((-q-sqrt(-4p³/27 + q²))/2)
Ratonial root therom
Is x²+cbrt((-q+sqrt(-4p³/27 + q²))/2)+cbrt((-q-sqrt(-4p³/27 + q²))/2)x+cbrt((-q+sqrt(-4p³/27 + q²))/2)+cbrt((-q-sqrt(-4p³/27 + q²))/2)=0
To (-(cbrt((-q+sqrt(-4p³/27 + q²))/2)+cbrt((-q-sqrt(-4p³/27 + q²))/2))±sqrt((cbrt((-q+sqrt(-4p³/27 + q²))/2)+cbrt((-q-sqrt(-4p³/27 + q²))/2))²-4(cbrt((-q+sqrt(-4p³/27 + q²))/2)+cbrt((-q-sqrt(-4p³/27 + q²))/2))))/2
And
Final!!!
cbrt((-q+sqrt(-4p³/27 + q²))/2)+cbrt((-q-sqrt(-4p³/27 + q²))/2)+b/3a
((-(cbrt((-q+sqrt(-4p³/27 + q²))/2)+cbrt((-q-sqrt(-4p³/27 + q²))/2))±sqrt((cbrt((-q+sqrt(-4p³/27 + q²))/2)+cbrt((-q-sqrt(-4p³/27 + q²))/2))²-4(cbrt((-q+sqrt(-4p³/27 + q²))/2)+cbrt((-q-sqrt(-4p³/27 + q²))/2))))/2)+b/3a
Into the!!!
cbrt((-((2b³-9abc+27a²d)/27a²)+sqrt(-4(c - b²/3a)³/27 + q²))/2)+cbrt((-((2b³-9abc+27a²d)/27a²)-sqrt(-4(c - b²/3a)³/27 + ((2b³-9abc+27a²d)/27a²)²))/2)+b/3a
((-(cbrt((-((2b³-9abc+27a²d)/27a²)+sqrt(-4(c - b²/3a)³/27 + ((2b³-9abc+27a²d)/27a²)²))/2)+cbrt((-((2b³-9abc+27a²d)/27a²)-sqrt(-4(c - b²/3a)³/27 + ((2b³-9abc+27a²d)/27a²)²))/2))±sqrt((cbrt((-((2b³-9abc+27a²d)/27a²)+sqrt(-4(c - b²/3a)³/27 + ((2b³-9abc+27a²d)/27a²)²))/2)+cbrt((-((2b³-9abc+27a²d)/27a²)-sqrt(-4(c - b²/3a)³/27 + ((2b³-9abc+27a²d)/27a²)²))/2))²-4(cbrt((-((2b³-9abc+27a²d)/27a²)+sqrt(-4(c - b²/3a)³/27 + ((2b³-9abc+27a²d)/27a²)²))/2)+cbrt((-((2b³-9abc+27a²d)/27a²)-sqrt(-4(c - b²/3a)³/27 + ((2b³-9abc+27a²d)/27a²)²))/2))))/2)+b/3a
2 months ago | [YT] | 0
View 0 replies
stickman lore Official š | 2048 / 0 to ????? Inf
What method do you use
1:
Arcsin'(t)
Use Arcsin(t)=-iln(it+sqrt(1-t²))
D/dx -iln(it+sqrt(1-t²))
-i(D/dx ln(it+sqrt(1-t²)))
-i((d/dx it+sqrt(1-t²))/(it+sqrt(1-t²)))
d/dx it+sqrt(1-t²)
First term: i
Second term: (-2t)/2sqrt(1-t²) -> (-t)/sqrt(1-t²)
i + (-t)/sqrt(1-t²)
-i((i + (-t)/sqrt(1-t²))/(it+sqrt(1-t²)))
-i((isqrt(1-t²)/sqrt(1-t²) + (-t)/sqrt(1-t²))/(it+sqrt(1-t²)))
-i((isqrt(1-t²)/sqrt(1-t²) + (-t)/sqrt(1-t²))/(it+sqrt(1-t²)))
-i(((isqrt(1-t²)-t)/sqrt(1-t²))/(it+sqrt(1-t²)))
-i(((isqrt(1-t²)-t)/sqrt(1-t²))(it+sqrt(1-t²)))
(((sqrt(1-t²)+ti)/sqrt(1-t²))(it+sqrt(1-t²)))
(sqrt(1-t²)+ti)/sqrt(1-t²)(it+sqrt(1-t²)))
1/sqrt(1-t²)
2:
Use formula d/dx f^-1(x)
2 months ago | [YT] | 0
View 0 replies
stickman lore Official š | 2048 / 0 to ????? Inf
ķ“ķė°ģ“ķø
3 months ago | [YT] | 0
View 0 replies
stickman lore Official š | 2048 / 0 to ????? Inf
Quadradic
For quadradic roots a, b if can be factored in (x-a)(x-b) and expanding is (x²-xb)-(ax-ab)
(x²-bx)+(ab-ax)
(((x²)+(ab))-(bx))-ax
(x²)+(ab)-(b+a)x
x²-(b+a)x+ab
However quadradic term is1
For ax²+bx+c=0
Idea
x²+(b/a)x+(c/a)=0
x_1+x_2=b/a
x_1x_2=c/a
To make it easier
Subsitute d=b/a, e=c/a (not euler's number)
x_1+x_2=d
x_1x_2=e
(d/2-j)+(d/2+j)=d
x_1x_2=e
(d/2-j)(d/2+j)=e
(d²/4-j²)=e
(-j²)=e - d²/4
(j²)=d²/4 - e
(j)=sqrt(d²/4 - e)
(d/2 - sqrt(d²/4 - e))(d/2 + sqrt(d²/4 - e))=d
(d/2 - sqrt(d²/4 - e)), (d/2 + sqrt(d²/4 - e)) is (d/2 ± sqrt(d²/4 - e))
(b/2a ± sqrt(b²/4a² - c/a))
(b/2a ± sqrt(b²/4a² - 4ca/4a²))
Quadradic formula usually has 4ac
(b/2a ± sqrt(b²/4a² - 4ac/4a²))
(b/2a ± sqrt((b² - 4ac)/4a²))
(b/2a ± sqrt(b² - 4ac)/sqrt(4a²))
(b/2a ± sqrt(b² - 4ac)/sqrt(4a²))
d=-b/a it has - in linear terms
(-b/2a ± sqrt(b²/4a² - c/a))
(-b/2a ± sqrt(b²/4a² - 4ac/4a²))
(-b/2a ± sqrt((b² - 4ac)/4a²))
(-b/2a ± (sqrt(b² - 4ac)/2a))
(-b ± (sqrt(b² - 4ac)))/2a
Sum of roots: b/a (from old d)
Product of roots: c/a
For b²-4ac<0: both are complex
For b²-4ac=0: 1 solution
For b²-4ac>0: 2 real solution
3 months ago | [YT] | 0
View 0 replies
stickman lore Official š | 2048 / 0 to ????? Inf
Linear
ax+b=0
ax=-b
x=-b/a
Quadradic
Ax²+bx+c
x²+(b/a)x+(c/a)=0
Substitute x=y-h
A(y-h)²+b(y-h)+c what h make linear coefficient 0 is b/2a
So we Substitute x=y-(b/2a)
This looks like something
(y-(b/2a))²+(b/a)(y-(b/2a))+(c/a)
y²+(4ac-b²)/(4a²)=0
y²=-(4ac-b²)/(4a²)
y=±sqrt(-(4ac-b²)/(4a²))
y=±sqrt(-(4ac-b²))/2a
y=sqrt((b²-4ac))/2a
x=y-(b/2a)->x+(b/2a)=y
x+b/2a=±sqrt((b²-4ac))/2a
x=(-b±sqrt((b²-4ac)))/2a
Cubics
ax³+bx²+cx+d
x³+(b/a)x²+(c/a)x+(d/a)=0
A(x-h)³+b(x-h)²+c(x-h)+d what h make quadradic coefficient 0
b/3a
Plug h=b/3a is x³+px+q (p=(3ac-b²)/3a² and q=(2b³ ā 9abc +27a²d)/27a³)
x³+px+q=0
x=u+v
(u+v)³+p(u+v)+q=0
(u+v)³=u³+3u²v+3uv²+v³
(u+v)³=u³+3u²*v+3uv*v+v³
(u+v)³=u³+v(3u²+3uv)+v³
(u+v)³=u³+3v(u²+uv)+v³
(u+v)³=u³+3uv(u+v)+v³
u³+3uv(u+v)+v³+p(u+v)+q=0
u³+v³+3uv(u+v)+p(u+v)+q=0
u³+v³+(3uv+p)(u+v)+q=0
uv=-p/3
u³+v³+q=0
u³+v³=-q
uv=-p/3 and u³+v³=-q
u³v³=-p³/27 and u³+v³=-q
U=u³, V=v³
UV=-p³/27 and U+V=-q
t²+qt-p³/27
Soon
3 months ago (edited) | [YT] | 0
View 0 replies
Load more