stickman lore Official šŸ” | 2048 / 0 to ????? Inf

I made stickman lore
superplayday (in 2023)
0 to never part 29/50
1 to Absolute infinity part 3/100
Trying to find green screen kids to make fractals
Just helping green screen adults to remix the video
Helping everything
Helping the fractal formula
Helping the people commenting
1āœ…ļø
5āœ…ļø
100āœ…ļø
1000āœ…ļø
3000āœ…ļø
4000āœ…ļø
5000āœ…ļø
10,000āŒļø
25,000āŒļø
74,500āŒļø
180,000āŒļø
314,159āŒļø
628,000āŒļø
Sub me or you will have a bad day
2048:
Has been reached 10^10000000
2048 Tile Very Big Power Morph
Rules: no unsub me, no 2nd or more than place of sub (more subscribers than mrbeast)
Number blocks youtube.com/shorts/_MI0ak7HfI4?si=dAgsMzlDC2HiI2cb
Rules: no grounding me, no terminated me.
Best calculator: s.castle.xyz/S5B2pyjDlPv6
subscribe for a burger šŸ”
+ I'm a video effect creator


stickman lore Official šŸ” | 2048 / 0 to ????? Inf

Arctanget calculator: (copy-paste)
https://www.desmos.com/calculator/5dvms4c5xb

2 weeks ago (edited) | [YT] | 0

stickman lore Official šŸ” | 2048 / 0 to ????? Inf

My masterpiece
Sin(2x)=?
2x=x+x
sin(x+x)
Sin(a+b)=?
sin(a+b)
b=ci
sin(a+ci)
(e^(a+ci)i-e^-(a+ci)i)/2i
(e^(-c+ai)-e^(c-ai))/2i
(e^-c * e^ai - e^c * e^-ai)/2i
Pt 1
e^-c * e^ai
e^-c * (cos(a)+sin(a)i)
cos(a)e^-c + isin(a)e^-c
Pt 2
e^c * e^-ai
e^c * (cos(a)-sin(a)i)
cos(a)e^c - isin(a)e^c
Pt 3
(cos(a)e^-c + isin(a)e^-c)-(cos(a)e^c - isin(a)e^c)

(cos(a)e^-c - cos(a)e^c)+ i(sin(a)e^-c + sin(a)e^c)

Pt 4
(cos(a)e^-c - cos(a)e^c) + i(sin(a)e^-c + sin(a)e^c) we want this to divide by 1/2i we know that 1/i=-i

Pr 5
i(cos(a)e^-c - cos(a)e^c) + i²(sin(a)e^-c + sin(a)e^c)
(-sin(a)e^-c - sin(a)e^c) + i(cos(a)e^-c - cos(a)e^c)
Pt 6
-(-sin(a)e^-c - sin(a)e^c) - i(cos(a)e^-c - cos(a)e^c)
(sin(a)e^-c + sin(a)e^c) + i(cos(a)e^c - cos(a)e^-c)
Pt 7
(sin(a)e^-c + sin(a)e^c)/2 + i(cos(a)e^c - cos(a)e^-c)/2
Pt 8
sin(a)(e^-c + e^c)/2 + icos(a)(e^c - e^-c)/2
sin(a)cosh(c) + icos(a)sinh(c)
Pt 9
b=ci
b/i=c
c=-bi
sin(a)cosh(-bi) + icos(a)sinh(-bi)
sin(a)cosh(bi) - icos(a)sinh(bi)
sinh(bi)=(e^bi - e^-bi)/2=isin(b)
cosh(bi)=(e^bi + e^-bi)/2=cos(b)
sin(a)cos(b) - icos(a)isin(b)
sin(a)cos(b) + cos(a)sin(b)
Part 10
Subsitute a=x, b=x
sin(x)cos(x) + cos(x)sin(x)
Sin(2x)=2sin(x)cos(x)

1 month ago (edited) | [YT] | 1

stickman lore Official šŸ” | 2048 / 0 to ????? Inf

Cbrt(x) of a complex numbers
DEEDE
Do some expansion
(a+bi)³=a³+3a²bi-3ab²-b³i=(a³-3ab²)+(3a²b-b³)i
(a³-3ab²)=c, (3a²b-b³)=d
(a³-3ab²)=c
Lets act c as a constant
a(a²-3b²)=c
(a²-3b²)=c/a
(-3b²)=c/a - a²
(b²)=(a² - c/a)/3
(b)=sqrt((a² - c/a)/3)
(3a²sqrt((a² - c/a)/3)-sqrt((a² - c/a)/3)³)=d
(3a²sqrt((a² - c/a)/3)-sqrt((a² - c/a)/3)³)=d
[(a² - c/a)/3] * [(8a² + c/a)² / 9] = d²
(a²/3 - c/a) * (a²/3 - c/a - 3a²)² = d²
(a²/3 - c/a) * (a²/3 - c/a - 3a²)² = d²
64a⁶/27 - 16a³c/3 - 5c² - c³/a³ = d²
64a⁹/27 - 16a⁶c/3 - 5c²a³ - c³ = d²a³
t=a³
64t³/27 - 16t²c/3 - 5c²t - t = d²t
64t³/27 - 16t²c/3 - (5c²-d²)t - t =0
64t³/27 - 16t²c/3 - (5c²-d²-1)t=0
(64/27)x³+(-9c²+d²+1)x+1/4(-23c³+3cd²+3c)
t=x+3c/4
(64/27)x³+(-9c²+d²+1)x+1/4(-23c³+3cd²+3c)
x=Cbrt((27/512)(23c³-3cd-3c)+sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)) + Cbrt((27/512)(23c³-3cd-3c)-sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)), (omegaCbrt((27/512)(23c³-3cd-3c)+sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)) + omega²Cbrt((27/512)(23c³-3cd-3c)-sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³))), (omega²Cbrt((27/512)(23c³-3cd-3c)+sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)) + omegaCbrt((27/512)(23c³-3cd-3c)-sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³))
t=((Cbrt((27/512)(23c³-3cd-3c)+sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)) + Cbrt((27/512)(23c³-3cd-3c)-sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³))))-3c/4, (omegaCbrt((27/512)(23c³-3cd-3c)+sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)) + omega²Cbrt((27/512)(23c³-3cd-3c)-sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)))-3c/4, (omega²Cbrt((27/512)(23c³-3cd-3c)+sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)) + omegaCbrt((27/512)(23c³-3cd-3c)-sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)))-3c/4
a=cbrt(((Cbrt((27/512)(23c³-3cd-3c)+sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)) + Cbrt((27/512)(23c³-3cd-3c)-sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³))))-3c/4), cbrt((omegaCbrt((27/512)(23c³-3cd-3c)+sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)) + omega²Cbrt((27/512)(23c³-3cd-3c)-sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)))-3c/4), cbrt((omega²Cbrt((27/512)(23c³-3cd-3c)+sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)) + omegaCbrt((27/512)(23c³-3cd-3c)-sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)))-3c/4)
(b)=sqrt(((cbrt(((Cbrt((27/512)(23c³-3cd-3c)+sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)) + Cbrt((27/512)(23c³-3cd-3c)-sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³))))-3c/4))² - c/(cbrt(((Cbrt((27/512)(23c³-3cd-3c)+sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)) + Cbrt((27/512)(23c³-3cd-3c)-sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³))))-3c/4)))/3), sqrt(((cbrt((omegaCbrt((27/512)(23c³-3cd-3c)+sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)) + omega²Cbrt((27/512)(23c³-3cd-3c)-sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)))-3c/4))² - c/(cbrt((omegaCbrt((27/512)(23c³-3cd-3c)+sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)) + omega²Cbrt((27/512)(23c³-3cd-3c)-sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)))-3c/4)))/3), sqrt(((cbrt((omega²Cbrt((27/512)(23c³-3cd-3c)+sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)) + omegaCbrt((27/512)(23c³-3cd-3c)-sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)))-3c/4))² - c/(cbrt((omega²Cbrt((27/512)(23c³-3cd-3c)+sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)) + omegaCbrt((27/512)(23c³-3cd-3c)-sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)))-3c/4)))/3)
------------------------------
Cbrt((c,d))=((cbrt(((Cbrt((27/512)(23c³-3cd-3c)+sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)) + Cbrt((27/512)(23c³-3cd-3c)-sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³))))-3c/4)),(sqrt(((cbrt(((Cbrt((27/512)(23c³-3cd-3c)+sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)) + Cbrt((27/512)(23c³-3cd-3c)-sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³))))-3c/4))² - c/(cbrt(((Cbrt((27/512)(23c³-3cd-3c)+sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)) + Cbrt((27/512)(23c³-3cd-3c)-sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³))))-3c/4)))/3))), ((cbrt((omegaCbrt((27/512)(23c³-3cd-3c)+sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)) + omega²Cbrt((27/512)(23c³-3cd-3c)-sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)))-3c/4)),(sqrt(((cbrt((omegaCbrt((27/512)(23c³-3cd-3c)+sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)) + omega²Cbrt((27/512)(23c³-3cd-3c)-sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)))-3c/4))² - c/(cbrt((omegaCbrt((27/512)(23c³-3cd-3c)+sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)) + omega²Cbrt((27/512)(23c³-3cd-3c)-sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)))-3c/4)))/3))), ((cbrt((omega²Cbrt((27/512)(23c³-3cd-3c)+sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)) + omegaCbrt((27/512)(23c³-3cd-3c)-sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)))-3c/4)),(sqrt(((cbrt((omega²Cbrt((27/512)(23c³-3cd-3c)+sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)) + omegaCbrt((27/512)(23c³-3cd-3c)-sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)))-3c/4))² - c/(cbrt((omega²Cbrt((27/512)(23c³-3cd-3c)+sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)) + omegaCbrt((27/512)(23c³-3cd-3c)-sqrt(((27/512)(-23c³+3cd+3c))²+((9/64)(-9c²+d²+1))³)))-3c/4)))/3)))

2 months ago | [YT] | 0

stickman lore Official šŸ” | 2048 / 0 to ????? Inf

Linear
ax+b=0
ax=-b
x=-b/a
Quadradic
Ax²+bx+c
x²+(b/a)x+(c/a)=0
Substitute x=y-h
A(y-h)²+b(y-h)+c what h make linear coefficient 0 is b/2a
So we Substitute x=y-(b/2a)
This looks like something
(y-(b/2a))²+(b/a)(y-(b/2a))+(c/a)
y²+(4ac-b²)/(4a²)=0
y²=-(4ac-b²)/(4a²)
y=±sqrt(-(4ac-b²)/(4a²))
y=±sqrt(-(4ac-b²))/2a
y=sqrt((b²-4ac))/2a
x=y-(b/2a)->x+(b/2a)=y
x+b/2a=±sqrt((b²-4ac))/2a
x=(-b±sqrt((b²-4ac)))/2a
Cubics
Cubic formula
ax³+bx²+cx+d=0
x=y-b/3a
Expanding it gives us x³+px+q for p=(c - b²/3a), q=((2b³-9abc+27a²d)/27a²)
x³+px+q=0
x³+px+q=0
(a+b)³=a³+3ab(a+b)+b³
x=u+v
(u+v)³+px+q=0
(a+b)³-3ab(a+b)=a³+b³
(u+v)³+p(u+v)+q=0
(u+v)³+p(u+v)=-q
a=u, b=v
(a+b)³+p(a+b)=-q
a³+b³=-q
3ab=p -> ab=p/3
ab=p/3
a³b³=p³/27
K=a³, L=b³
K+L=-q, KL=p³/27
(-q/2+B)+(-q/2-B)=-q
(-q/2+B)(-q/2-B)=p³/27
-q²/4 - B²=p³/27
B² - q²/4=-p³/27
B²=-p³/27 + q²/4
B=sqrt(-p³/27 + q²/4)
K=-q/2+sqrt(-p³/27 + q²/4)
L=-q/2-sqrt(-p³/27 + q²/4)
Quadradic formula form
K=(-q+sqrt(-4p³/27 + q²))/2
L=(-q-sqrt(-4p³/27 + q²))/2
And
a³=(-q+sqrt(-4p³/27 + q²))/2
b³=(-q-sqrt(-4p³/27 + q²))/2
For
a=cbrt((-q+sqrt(-4p³/27 + q²))/2)
b=cbrt((-q-sqrt(-4p³/27 + q²))/2)
It thr
u=cbrt((-q+sqrt(-4p³/27 + q²))/2)
v=cbrt((-q-sqrt(-4p³/27 + q²))/2)
frst root of depressed
x=cbrt((-q+sqrt(-4p³/27 + q²))/2)+cbrt((-q-sqrt(-4p³/27 + q²))/2)
Ratonial root therom
Is x²+cbrt((-q+sqrt(-4p³/27 + q²))/2)+cbrt((-q-sqrt(-4p³/27 + q²))/2)x+cbrt((-q+sqrt(-4p³/27 + q²))/2)+cbrt((-q-sqrt(-4p³/27 + q²))/2)=0
To (-(cbrt((-q+sqrt(-4p³/27 + q²))/2)+cbrt((-q-sqrt(-4p³/27 + q²))/2))±sqrt((cbrt((-q+sqrt(-4p³/27 + q²))/2)+cbrt((-q-sqrt(-4p³/27 + q²))/2))²-4(cbrt((-q+sqrt(-4p³/27 + q²))/2)+cbrt((-q-sqrt(-4p³/27 + q²))/2))))/2
And
Final!!!
cbrt((-q+sqrt(-4p³/27 + q²))/2)+cbrt((-q-sqrt(-4p³/27 + q²))/2)+b/3a
((-(cbrt((-q+sqrt(-4p³/27 + q²))/2)+cbrt((-q-sqrt(-4p³/27 + q²))/2))±sqrt((cbrt((-q+sqrt(-4p³/27 + q²))/2)+cbrt((-q-sqrt(-4p³/27 + q²))/2))²-4(cbrt((-q+sqrt(-4p³/27 + q²))/2)+cbrt((-q-sqrt(-4p³/27 + q²))/2))))/2)+b/3a
Into the!!!
cbrt((-((2b³-9abc+27a²d)/27a²)+sqrt(-4(c - b²/3a)³/27 + q²))/2)+cbrt((-((2b³-9abc+27a²d)/27a²)-sqrt(-4(c - b²/3a)³/27 + ((2b³-9abc+27a²d)/27a²)²))/2)+b/3a
((-(cbrt((-((2b³-9abc+27a²d)/27a²)+sqrt(-4(c - b²/3a)³/27 + ((2b³-9abc+27a²d)/27a²)²))/2)+cbrt((-((2b³-9abc+27a²d)/27a²)-sqrt(-4(c - b²/3a)³/27 + ((2b³-9abc+27a²d)/27a²)²))/2))±sqrt((cbrt((-((2b³-9abc+27a²d)/27a²)+sqrt(-4(c - b²/3a)³/27 + ((2b³-9abc+27a²d)/27a²)²))/2)+cbrt((-((2b³-9abc+27a²d)/27a²)-sqrt(-4(c - b²/3a)³/27 + ((2b³-9abc+27a²d)/27a²)²))/2))²-4(cbrt((-((2b³-9abc+27a²d)/27a²)+sqrt(-4(c - b²/3a)³/27 + ((2b³-9abc+27a²d)/27a²)²))/2)+cbrt((-((2b³-9abc+27a²d)/27a²)-sqrt(-4(c - b²/3a)³/27 + ((2b³-9abc+27a²d)/27a²)²))/2))))/2)+b/3a

2 months ago | [YT] | 0

stickman lore Official šŸ” | 2048 / 0 to ????? Inf

What method do you use
1:
Arcsin'(t)
Use Arcsin(t)=-iln(it+sqrt(1-t²))
D/dx -iln(it+sqrt(1-t²))
-i(D/dx ln(it+sqrt(1-t²)))
-i((d/dx it+sqrt(1-t²))/(it+sqrt(1-t²)))
d/dx it+sqrt(1-t²)
First term: i
Second term: (-2t)/2sqrt(1-t²) -> (-t)/sqrt(1-t²)
i + (-t)/sqrt(1-t²)
-i((i + (-t)/sqrt(1-t²))/(it+sqrt(1-t²)))
-i((isqrt(1-t²)/sqrt(1-t²) + (-t)/sqrt(1-t²))/(it+sqrt(1-t²)))


-i((isqrt(1-t²)/sqrt(1-t²) + (-t)/sqrt(1-t²))/(it+sqrt(1-t²)))

-i(((isqrt(1-t²)-t)/sqrt(1-t²))/(it+sqrt(1-t²)))

-i(((isqrt(1-t²)-t)/sqrt(1-t²))(it+sqrt(1-t²)))

(((sqrt(1-t²)+ti)/sqrt(1-t²))(it+sqrt(1-t²)))

(sqrt(1-t²)+ti)/sqrt(1-t²)(it+sqrt(1-t²)))

1/sqrt(1-t²)
2:
Use formula d/dx f^-1(x)

2 months ago | [YT] | 0

stickman lore Official šŸ” | 2048 / 0 to ????? Inf

ķ€“ķƒ€ė°”ģ“ķŠø

3 months ago | [YT] | 0

stickman lore Official šŸ” | 2048 / 0 to ????? Inf

Quadradic
For quadradic roots a, b if can be factored in (x-a)(x-b) and expanding is (x²-xb)-(ax-ab)
(x²-bx)+(ab-ax)
(((x²)+(ab))-(bx))-ax
(x²)+(ab)-(b+a)x
x²-(b+a)x+ab
However quadradic term is1
For ax²+bx+c=0
Idea
x²+(b/a)x+(c/a)=0
x_1+x_2=b/a
x_1x_2=c/a
To make it easier
Subsitute d=b/a, e=c/a (not euler's number)
x_1+x_2=d
x_1x_2=e
(d/2-j)+(d/2+j)=d
x_1x_2=e
(d/2-j)(d/2+j)=e
(d²/4-j²)=e
(-j²)=e - d²/4
(j²)=d²/4 - e
(j)=sqrt(d²/4 - e)
(d/2 - sqrt(d²/4 - e))(d/2 + sqrt(d²/4 - e))=d
(d/2 - sqrt(d²/4 - e)), (d/2 + sqrt(d²/4 - e)) is (d/2 ± sqrt(d²/4 - e))
(b/2a ± sqrt(b²/4a² - c/a))
(b/2a ± sqrt(b²/4a² - 4ca/4a²))
Quadradic formula usually has 4ac
(b/2a ± sqrt(b²/4a² - 4ac/4a²))
(b/2a ± sqrt((b² - 4ac)/4a²))
(b/2a ± sqrt(b² - 4ac)/sqrt(4a²))
(b/2a ± sqrt(b² - 4ac)/sqrt(4a²))
d=-b/a it has - in linear terms
(-b/2a ± sqrt(b²/4a² - c/a))
(-b/2a ± sqrt(b²/4a² - 4ac/4a²))
(-b/2a ± sqrt((b² - 4ac)/4a²))
(-b/2a ± (sqrt(b² - 4ac)/2a))
(-b ± (sqrt(b² - 4ac)))/2a
Sum of roots: b/a (from old d)
Product of roots: c/a
For b²-4ac<0: both are complex
For b²-4ac=0: 1 solution
For b²-4ac>0: 2 real solution

3 months ago | [YT] | 0

stickman lore Official šŸ” | 2048 / 0 to ????? Inf

Linear
ax+b=0
ax=-b
x=-b/a
Quadradic
Ax²+bx+c
x²+(b/a)x+(c/a)=0
Substitute x=y-h
A(y-h)²+b(y-h)+c what h make linear coefficient 0 is b/2a
So we Substitute x=y-(b/2a)
This looks like something
(y-(b/2a))²+(b/a)(y-(b/2a))+(c/a)
y²+(4ac-b²)/(4a²)=0
y²=-(4ac-b²)/(4a²)
y=±sqrt(-(4ac-b²)/(4a²))
y=±sqrt(-(4ac-b²))/2a
y=sqrt((b²-4ac))/2a
x=y-(b/2a)->x+(b/2a)=y
x+b/2a=±sqrt((b²-4ac))/2a
x=(-b±sqrt((b²-4ac)))/2a
Cubics
ax³+bx²+cx+d
x³+(b/a)x²+(c/a)x+(d/a)=0
A(x-h)³+b(x-h)²+c(x-h)+d what h make quadradic coefficient 0
b/3a
Plug h=b/3a is x³+px+q (p=(3ac-b²)/3a² and q=(2b³ – 9abc +27a²d)/27a³)
x³+px+q=0
x=u+v
(u+v)³+p(u+v)+q=0
(u+v)³=u³+3u²v+3uv²+v³
(u+v)³=u³+3u²*v+3uv*v+v³
(u+v)³=u³+v(3u²+3uv)+v³
(u+v)³=u³+3v(u²+uv)+v³
(u+v)³=u³+3uv(u+v)+v³
u³+3uv(u+v)+v³+p(u+v)+q=0
u³+v³+3uv(u+v)+p(u+v)+q=0
u³+v³+(3uv+p)(u+v)+q=0
uv=-p/3
u³+v³+q=0
u³+v³=-q
uv=-p/3 and u³+v³=-q
u³v³=-p³/27 and u³+v³=-q
U=u³, V=v³
UV=-p³/27 and U+V=-q
t²+qt-p³/27
Soon

3 months ago (edited) | [YT] | 0