What method do you use 1: Arcsin'(t) Use Arcsin(t)=-iln(it+sqrt(1-t²)) D/dx -iln(it+sqrt(1-t²)) -i(D/dx ln(it+sqrt(1-t²))) -i((d/dx it+sqrt(1-t²))/(it+sqrt(1-t²))) d/dx it+sqrt(1-t²) First term: i Second term: (-2t)/2sqrt(1-t²) -> (-t)/sqrt(1-t²) i + (-t)/sqrt(1-t²) -i((i + (-t)/sqrt(1-t²))/(it+sqrt(1-t²))) -i((isqrt(1-t²)/sqrt(1-t²) + (-t)/sqrt(1-t²))/(it+sqrt(1-t²)))
stickman lore Official š | 2048 / 0 to ????? Inf
What method do you use
1:
Arcsin'(t)
Use Arcsin(t)=-iln(it+sqrt(1-t²))
D/dx -iln(it+sqrt(1-t²))
-i(D/dx ln(it+sqrt(1-t²)))
-i((d/dx it+sqrt(1-t²))/(it+sqrt(1-t²)))
d/dx it+sqrt(1-t²)
First term: i
Second term: (-2t)/2sqrt(1-t²) -> (-t)/sqrt(1-t²)
i + (-t)/sqrt(1-t²)
-i((i + (-t)/sqrt(1-t²))/(it+sqrt(1-t²)))
-i((isqrt(1-t²)/sqrt(1-t²) + (-t)/sqrt(1-t²))/(it+sqrt(1-t²)))
-i((isqrt(1-t²)/sqrt(1-t²) + (-t)/sqrt(1-t²))/(it+sqrt(1-t²)))
-i(((isqrt(1-t²)-t)/sqrt(1-t²))/(it+sqrt(1-t²)))
-i(((isqrt(1-t²)-t)/sqrt(1-t²))(it+sqrt(1-t²)))
(((sqrt(1-t²)+ti)/sqrt(1-t²))(it+sqrt(1-t²)))
(sqrt(1-t²)+ti)/sqrt(1-t²)(it+sqrt(1-t²)))
1/sqrt(1-t²)
2:
Use formula d/dx f^-1(x)
2 months ago | [YT] | 0