Chain

πŸ“’ Visualize Supply Chain Data with Matplotlib! πŸ“ŠπŸš€

Matplotlib is a powerful Python library for data visualization, helping supply chain professionals analyze demand trends, inventory levels, transportation costs, and more. Let’s explore how you can use it!

πŸ”Ή 1. Visualizing Demand Trends Over Time
Tracking demand patterns helps in better forecasting and inventory planning.


import matplotlib.pyplot as plt

weeks = ["Week 1", "Week 2", "Week 3", "Week 4", "Week 5"]
demand = [100, 120, 90, 110, 130]

plt.plot(weeks, demand, marker="o", linestyle="-")
plt.title("Weekly Demand Trend")
plt.xlabel("Weeks")
plt.ylabel("Demand")
plt.grid(True)
plt.show()
πŸ’‘ Usage: Identifies peak demand periods and trends.

πŸ”Ή 2. Analyzing Inventory Levels
Compare stock levels across different products.


products = ["A", "B", "C", "D", "E"]
stock_levels = [500, 300, 700, 400, 600]

plt.bar(products, stock_levels, color="skyblue")
plt.title("Inventory Levels by Product")
plt.xlabel("Products")
plt.ylabel("Stock Quantity")
plt.show()
πŸ’‘ Application: Helps in identifying overstocked or understocked items.

πŸ”Ή 3. Comparing Shipping Costs Across Vendors
Choosing the best vendor requires analyzing cost variations.


vendors = ["Vendor A", "Vendor B", "Vendor C", "Vendor D"]
shipping_costs = [500, 700, 450, 600]

plt.barh(vendors, shipping_costs, color="lightcoral")
plt.title("Shipping Costs by Vendor")
plt.xlabel("Cost ($)")
plt.ylabel("Vendors")
plt.show()
πŸ’‘ Benefit: Helps optimize logistics by selecting cost-effective suppliers.

πŸ”Ή 4. Visualizing Warehouse Utilization
Monitor how efficiently warehouses are being used.


warehouses = ["WH1", "WH2", "WH3", "WH4"]
capacity = [5000, 6000, 7000, 8000]
utilized = [4500, 5500, 6000, 7500]

plt.bar(warehouses, capacity, color="gray", label="Total Capacity")
plt.bar(warehouses, utilized, color="green", label="Utilized Space")
plt.title("Warehouse Space Utilization")
plt.xlabel("Warehouses")
plt.ylabel("Space (Cubic Meters)")
plt.legend()
plt.show()
πŸ’‘ Usage: Helps in warehouse planning and optimizing storage space.

πŸ”Ή 5. Analyzing Lead Time Variability
Lead time fluctuations impact supply chain efficiency.


import numpy as np

lead_times = np.random.normal(10, 2, 1000)

plt.hist(lead_times, bins=20, color="purple", alpha=0.7)
plt.title("Lead Time Distribution")
plt.xlabel("Days")
plt.ylabel("Frequency")
plt.show()
πŸ’‘ Application: Helps in setting realistic reorder points.

πŸ”₯ Why Use Matplotlib in Supply Chain?
βœ… Helps visualize key supply chain metrics
βœ… Enables better decision-making with data-driven insights
βœ… Identifies trends, anomalies, and optimization opportunities
βœ… Makes reports more engaging and easy to understand


#SupplyChain #Python #Matplotlib #Logistics #InventoryManagement #DataVisualization

1 month ago | [YT] | 2