π’ Visualize Supply Chain Data with Matplotlib! ππ
Matplotlib is a powerful Python library for data visualization, helping supply chain professionals analyze demand trends, inventory levels, transportation costs, and more. Letβs explore how you can use it!
πΉ 1. Visualizing Demand Trends Over Time Tracking demand patterns helps in better forecasting and inventory planning.
plt.bar(warehouses, capacity, color="gray", label="Total Capacity") plt.bar(warehouses, utilized, color="green", label="Utilized Space") plt.title("Warehouse Space Utilization") plt.xlabel("Warehouses") plt.ylabel("Space (Cubic Meters)") plt.legend() plt.show() π‘ Usage: Helps in warehouse planning and optimizing storage space.
πΉ 5. Analyzing Lead Time Variability Lead time fluctuations impact supply chain efficiency.
import numpy as np
lead_times = np.random.normal(10, 2, 1000)
plt.hist(lead_times, bins=20, color="purple", alpha=0.7) plt.title("Lead Time Distribution") plt.xlabel("Days") plt.ylabel("Frequency") plt.show() π‘ Application: Helps in setting realistic reorder points.
π₯ Why Use Matplotlib in Supply Chain? β Helps visualize key supply chain metrics β Enables better decision-making with data-driven insights β Identifies trends, anomalies, and optimization opportunities β Makes reports more engaging and easy to understand
Chain
π’ Visualize Supply Chain Data with Matplotlib! ππ
Matplotlib is a powerful Python library for data visualization, helping supply chain professionals analyze demand trends, inventory levels, transportation costs, and more. Letβs explore how you can use it!
πΉ 1. Visualizing Demand Trends Over Time
Tracking demand patterns helps in better forecasting and inventory planning.
import matplotlib.pyplot as plt
weeks = ["Week 1", "Week 2", "Week 3", "Week 4", "Week 5"]
demand = [100, 120, 90, 110, 130]
plt.plot(weeks, demand, marker="o", linestyle="-")
plt.title("Weekly Demand Trend")
plt.xlabel("Weeks")
plt.ylabel("Demand")
plt.grid(True)
plt.show()
π‘ Usage: Identifies peak demand periods and trends.
πΉ 2. Analyzing Inventory Levels
Compare stock levels across different products.
products = ["A", "B", "C", "D", "E"]
stock_levels = [500, 300, 700, 400, 600]
plt.bar(products, stock_levels, color="skyblue")
plt.title("Inventory Levels by Product")
plt.xlabel("Products")
plt.ylabel("Stock Quantity")
plt.show()
π‘ Application: Helps in identifying overstocked or understocked items.
πΉ 3. Comparing Shipping Costs Across Vendors
Choosing the best vendor requires analyzing cost variations.
vendors = ["Vendor A", "Vendor B", "Vendor C", "Vendor D"]
shipping_costs = [500, 700, 450, 600]
plt.barh(vendors, shipping_costs, color="lightcoral")
plt.title("Shipping Costs by Vendor")
plt.xlabel("Cost ($)")
plt.ylabel("Vendors")
plt.show()
π‘ Benefit: Helps optimize logistics by selecting cost-effective suppliers.
πΉ 4. Visualizing Warehouse Utilization
Monitor how efficiently warehouses are being used.
warehouses = ["WH1", "WH2", "WH3", "WH4"]
capacity = [5000, 6000, 7000, 8000]
utilized = [4500, 5500, 6000, 7500]
plt.bar(warehouses, capacity, color="gray", label="Total Capacity")
plt.bar(warehouses, utilized, color="green", label="Utilized Space")
plt.title("Warehouse Space Utilization")
plt.xlabel("Warehouses")
plt.ylabel("Space (Cubic Meters)")
plt.legend()
plt.show()
π‘ Usage: Helps in warehouse planning and optimizing storage space.
πΉ 5. Analyzing Lead Time Variability
Lead time fluctuations impact supply chain efficiency.
import numpy as np
lead_times = np.random.normal(10, 2, 1000)
plt.hist(lead_times, bins=20, color="purple", alpha=0.7)
plt.title("Lead Time Distribution")
plt.xlabel("Days")
plt.ylabel("Frequency")
plt.show()
π‘ Application: Helps in setting realistic reorder points.
π₯ Why Use Matplotlib in Supply Chain?
β Helps visualize key supply chain metrics
β Enables better decision-making with data-driven insights
β Identifies trends, anomalies, and optimization opportunities
β Makes reports more engaging and easy to understand
#SupplyChain #Python #Matplotlib #Logistics #InventoryManagement #DataVisualization
1 month ago | [YT] | 2