11:02
Q 1.1 || Understanding Continuous & Discrete Time Signals || (Oppenheim)
Electrical Engineering Academy
3:03
Trick Showing How to Calculate sin (pi), cos(pi), using Casio Calculator
12:53
Question 1.2 : Mastering Complex to Polar Conversion || (Oppenheim)
4:42
Q1.21|| Continuous-Time Signal Analysis: Sketching and Labeling Techniques||
14:35
Q 1.3(a,b,c) || Signal Energy & Power: Mastering Concepts in Continuous Time Signals ||
9:30
Q1.3(d, e, f): Understanding Signal Energy & Power in Discrete Time Signals
5:42
Q 1.4 || Discrete-Time Signals & Systems: Mastering Basic Concepts || Signal and Systems (Oppenheim)
26:14
Example 1.1 || Transformations of Independent Variable: Mastering Time Shifting, Scaling, Reversal
7:52
Q 1.5: Time Shifting and Time Scaling in Continuous Time Signals Explained (Oppenheim)
2:29
Q1.22(d): Understanding How to Sketch & Label Discrete-Time Signals (Oppenheim)
12:49
Even & Odd Signals || How to sketch || Question 1.23 (a,b,c) || S&S 1.2.3
13:21
Even and Odd Signals || End Ch Question 1.23(b) & 1.24(a) || S&S 1.2.3
21:31
Periodic Signals || End Ch Questions 1.25(a,b,c) & 1.26(a,b,c) || S&S 1.2.2(English)(Oppenheim)
21:25
Complex Exponential Signals|| Example 1.5 || Question 1.25(a to e) || (CT) || S&S 1.3.1
15:55
DT Complex Exponential || End Ch Question1.26(a,b,c,d) || Exponential & Sinusoidal Signals ||SS1.3.2
15:33
General Properties of Systems || End Ch Question 1.27 (a) || S&S 1.6 (English)(Oppenheim)
8:05
Memoryless Property || End Ch Question 1.27 || SS 1.6.1
7:17
Causality Property || End Ch Question 1.27 || SS 1.6.3 (English)(Oppenheim)
7:46
Stability Property of a System || Example 1.27 || SS 1.6.4 (English)(Oppenheim)
13:39
Time Invariance Property of a System || End Ch Q 1.27 ||(Signals & Systems) ||(English)
14:49
Linearity Property of a System || End Ch Question 1.27 || SS 1.6.6 (English)(Oppenheim)
11:54
Finite Sum & Infinite Sum Formula Explained with the help of Example || End Ch Question 1.54
24:29
Unlock the Secrete of Convolution || Discrete Time LTI System || Ex 2.1& 2.3
15:21
Q 2.1(a,b,c) || Discrete Time Convolution by Convolution Sum Method || How to Compute and Plot
14:16
Q 2.1(a) || Convolution Discrete-Time LTI System -Graphical Method || (Oppenheim)
20:16
Example 2.4: Your Guide to Discrete Time Convolution Techniques || Signals and systems by oppenheim
12:18
Question 2.3 || Discrete Time Convolution || Signals & Systems (Allen Oppenheim)
21:55
Discrete-Time Convolution || End Ch Q 2.6 || S&S 2.1.2(2)(English)(Oppenheim)
18:35
Continuous Time Convolution || Example 2.6 & 2.7 || S&S 2.2.(1)(English)(Oppenheim)
4:19
CT Convolution || Infinite Series || Example 2.6 || SS 2.2 (2) (Oppenheim)
11:05
Continuous-Time LTI Systems: Mastering the Convolution Integral for Finite Signals
16:36
Example 2.7 || Technique to Plot Output Graph || Convolution of CT Signals || (Oppenheim)
14:31
Example 2.8: Mastering the Convolution of Infinite Continuous-Time Signals!
Properties of LTI Systems: Understanding Commutative & Distributive Properties with Example 2.10
Example 2.14 || End Ch Q 2.17(a) Linear Constant Coefficient Differential Equation
12:54
Example 2.15: Linear Constant-Coefficient Difference Equations || (Signals & Systems) (Oppenheim)
17:21
Example 2.14: Linear Constant-Coefficient Differential Equations || (Signals & Systems) (Oppenheim)
8:03
Example 3.1 || Eigenfunction & Eigenvalue || Response of LTI System to Complex Exponential
15:37
Example 3.1 || Fourier Series || Introduction || Eigenfunction & Ejgenvalue || (Oppenheim)
9:55
Example 3.2 || Write x(t) in the form of Sinusoidal || Plot x(t) || Oppenheim
13:12
Examples 3.2 & 3.3 || Fourier Series of Continuous-Time Periodic Signal || (Oppenheim)
7:58
Fourier Series || Example 3.4 || CT Signal || 3.3.2(2)
6:52
Fourier Series || Example 3.5 || Periodic Square Wave || SS 3.3.2(3)
15:24
Fourier Series || DT Periodic Signal || Example 3.10 & 3.11 || S&S 3.6
19:20
Fourier Series || DT Periodic Signal || Example 3.12 || S&S 3.6
17:22
Properties of DT Fourier Series || Example 3.13 & 3.14 || S&S 3.7
29:37
Example 3.16 || Fourier Series || Continuous Time LTI Systems || End Ch Q 3.34 || S&S
23:44
Example 3.17 || Fourier Series & Discrete Time LTI Systems || End Ch Q 3.37 || S&S 3.8 (Pt-2)
30:02
Example 4.1 || Fourier Transform || Continuous Time Fourier Transform || | S&S 4.1
19:54
CT Fourier Transform || Examples 4.2, 4.3, 4.4 & 4.5 || S&S 4.1(2)
12:02
Ex 4.4 & 4.5 || Discover Continuous Time Fourier Transform of Rectangular Pulse Signal
23:24
Fourier Transform of Periodic Signals || Example 4.6, 4.7, 4.8 || S&S 4.2 (3)(English)(Oppenheim)
10:08
Ex 4.9 || Usefulness of the Fourier transform linearity and time-shift properties explained
6:21
Example 4.10 || Finding Fourier Transform by Symmetry Properties Method || (Openheim)
22:40
Example 5.1 || Discrete-Time Fourier Transform: Aperiodic Signal Explained
16:42
Example 9.1 & 9.2: Mastering Laplace Transform in Signals & Systems (Oppenheim)
18:38
Ex 9.3 & 9.4: Unlocking the Laplace Transform and ROC of Real & Complex Exponentials
13:46
Example 9.5 Laplace Transform – Understanding Pole‑Zero Plot & ROC || Signals & System by Oppenheim
10:09
Example 9.6 || Region of Convergence (ROC) of a Finite Duration Signal || (Alan Oppenheim)
13:32
MASTERING Z-Transform is EASIER than You Think || Example 10.1 (Oppenheim - Signals & Systems)
10:21
Example 10.2 || Z-Transform || Signals & Systems (Oppenheim)
7:04
Example 10.3 || Z-Transform of a Signal that is the Sum of Two Real Exponentials || Oppenheim
9:04
Example 10.4 || Z-Transform of a Sinusoidal Signal || Oppenheim