53:38
Prove Yourself
Mathbyfives
2:20
Find cos(a-t) given sina=2/3 and sint=-1/3 reedit
1:42
Evaluate sin(13pi/12) Exactly reedit
0:49
simplify (tan100+tan80)/(1-tan100tan80) reedit
3:43
Find tan(-105) exactly reedit
0:50
Evaluate cos40cos50-sin40sin50 reedit
3:36
Prove (1-cosx)/(1+cosx)=(cotx-cscx)^2 reedit
1:17
Find cos75 exactly reedit
2:05
prove (2sinx+cosx)^2+(2cosx sinx)^2=5 reedit
2:42
Prove (1-cosx)/(1+cosx)=(cscx)^2-2cscxcotx+(cotx)^2 reedit
1:40
Prove cosx/secx+sinx/cscx=(secx)^2-(tanx)^2 reedit
2:30
Prove the Second Two Half Angle Identities for Tangent
2:00
Find tan(s+t) given cost=-3/5 and coss= 8/17 s&t in Q3
3:27
Prove sin(x-y)/sin(y+x)=(tanx-tany)/(tanx+tany)
3:23
Prove sin(a-b)/sinb+cos(a-b)/cosb=sina/(sinbcosb)
2:14
Prove tan(x-y)-tan(y-x)=2(tanx-tany)/(1+tanxtany)
2:18
Prove tanx(cosx)^2=(2tanx(cosx)^2-tanx)-(1-(tanx)^2)
0:46
Evaluate sin2x given sinx=2/5 and cosx less than 0
0:48
Prove cos2x=(2-(secx)^2)/secx
0:57
Prove (sinx+cosx)^2=sin2x+1
1:44
Evaluate sinx Given a Half Angle and Quadrant
1:09
Find sin15 Exactly Using Half Angle
2:47
Evaluate tan(x/2) given tanx
0:54
Prove (sec(x/2))^ 2=2/(1+cosx)
1:28
Prove sin4x=4sinxcosx-8(sinx)^3cosx
3:08
Distance From Pitcher to First and Second; Law of Cosine
3:04
Proof of the Half Angle Identity
5:48
Proof of cos2x=(cosx)^2-(sinx)^2=2(cosx)^2 1=1-2(sinx)^2
2:03
Proof sin2x=2sinxcosx
2:57
Proof of cos(A+B)=cosAcosB-sinAsinB using cos(A-B)
5:21
Proof of the tan(A+B)
4:18
Proof of sin(A+B)=sinAcosB+cosAsinB
2:27
Prove the Cofunction Identities using the cos(A-B)
Proof of the Cofunction Identity using Right Triangle Trigonometry
8:03
Proof cos(A-B)=cosAcosB+sinAsinB
4:32
Carbon Dating an Application of Logarithms
3:58
Derivation of the Pythagorean Trigonometric Identities
4:02
Proving trig identities 1.mov
3:57
Proving identities 2.2
2:17
prove trig identities level 2.3.mov
2:33
Prove Identities 2.4.mov
3:17
Evaluate a Formula to Find The Remaining Variable 4 Examples