light
Invidious

Statistics

 Subscribe
 RSS
DataMListic | 40 videos | Updated 6 days ago
View playlist on YouTube | Switch Invidious Instance


8:04

P-Values Explained

DataMListic

4:36

Covariance and Correlation Explained

DataMListic

4:18

Model Calibration - Brier Score Explained

DataMListic

4:47

Bias-Variance Trade-off - Explained

DataMListic

6:21

Why We Divide by N-1 in the Sample Variance (The Bessel's Correction)

DataMListic

3:21

Kullback-Leibler (KL) Divergence Mathematics Explained

DataMListic

2:21

Why We Don't Accept The Null Hypothesis

DataMListic

11:34

Why Minimizing the Negative Log Likelihood (NLL) Is Equivalent to Minimizing the KL-Divergence

DataMListic

3:15

Spearman Correlation Explained in 3 Minutes

DataMListic

3:15

Hyperparameters Tuning: Grid Search vs Random Search

DataMListic

3:38

Cross-Validation Explained

DataMListic

5:40

Singular Value Decomposition (SVD) Explained

DataMListic

4:49

Least Squares vs Maximum Likelihood

DataMListic

5:40

Marginal, Joint and Conditional Probabilities Explained

DataMListic

3:33

Covariance Matrix - Explained

DataMListic

9:12

T-Test Explained

DataMListic

8:01

Basic Probability Distributions Explained: Bernoulli, Binomial, Categorical, Multinomial

DataMListic

5:36

Poisson Distribution - Explained

DataMListic

4:04

L1 vs L2 Regularization

DataMListic

3:45

Z-Test Explained

DataMListic

4:24

Confidence Intervals Explained

DataMListic

4:11

Overfitting vs Underfitting - Explained

DataMListic

2:37

Why L1 Regularization Produces Sparse Weights (Geometric Intuition)

DataMListic

3:38

Content-Based Recommendations - Recommender Systems Part 1

DataMListic

4:27

Cross-Entropy - Explained

DataMListic

8:07

The Curse of Dimensionality

DataMListic

9:03

The Kernel Trick

DataMListic

4:22

RBF Kernel Explained: Mapping Data to Infinite Dimensions

DataMListic

8:15

Bayesian Optimization

DataMListic

9:33

Gaussian Processes

DataMListic

5:44

An Introduction to Graph Neural Networks

DataMListic

5:53

Introduction to HMMs | Hidden Markov Models Part 1

DataMListic

8:02

t-SNE - Explained

DataMListic

8:21

Student's t-Distribution - Explained

DataMListic

5:35

Variational Inference - Explained

DataMListic

5:31

Gamma Function - Explained

DataMListic

5:27

Degrees of Freedom - Explained

DataMListic

4:41

Central Limit Theorem - Explained

DataMListic

4:42

Lagrange Multipliers - Explained

DataMListic

4:13

Monte Carlo Simulation - Explained

DataMListic

Original source code / Modified source code Documentation
Released under the AGPLv3 on GitHub. View JavaScript license information. View privacy policy.
Services Forum Donate @ Tiekoetter.com Donate @ Invidious.io Current version: 2025.05.29-35e6fe36 @ master