Your 1 Stop Solution to Data Analytics ๐ฎ๐ณ๐บ๐ธ ๐๏ธDaily Shorts ๐Big Announcement Soon ๐กExcel,SQL,Python,Tableau ๐คYour career guide
Most people learn AI by building small demos. But ๐ฟ๐ฒ๐ฎ๐น ๐ฐ๐ผ๐บ๐ฝ๐ฎ๐ป๐ถ๐ฒ๐ ๐ฑ๐ผ๐ปโ๐ ๐๐ต๐ถ๐ฝ ๐ฑ๐ฒ๐บ๐ผ๐โฆ they ship production-grade AI systems.
Today we officially launched our new course where we teach how real AI software is designed, built, and deployed end-to-end โ from idea โ architecture โ agents โ production.
Ever wondered how apps like Snapchat keep users coming back every single day?
In this hands-on workshop, weโll reverse-engineer the streak & retention logic using advanced SQL Window Functions and build real product-level analytics.
๐๐ผ๐ถ๐ป ๐ฃ๐ฟ๐ผ๐ท๐ฒ๐ฐ๐ ๐ถ๐ป ๐ญ๐ด๐ฌ โ ๐ง๐ต๐ฒ ๐๐ฒ๐ป๐๐ ๐๐๐ถ๐น๐ฑ ๐๐ต๐ฎ๐น๐น๐ฒ๐ป๐ด๐ฒ, ๐ฎ ๐ฏ-๐ต๐ผ๐๐ฟ ๐ต๐ฎ๐ป๐ฑ๐-๐ผ๐ป ๐๐ฝ๐ฟ๐ถ๐ป๐ where youโll get a real-world problem statement, build a working GenAI project in 2 hours, and spend the last hour reviewing and improving your solution together.
That rush of excitement when you click โ๐๐ป๐ฟ๐ผ๐น๐น.โ You imagine the new skill, the certificate on your LinkedIn, maybe even the career change. For a moment, it feels like your life just took a leap forward.
The first week goes fine. The second week, youโre โbusy.โ By the third week, you tell yourself youโll โcatch up later.โ And by the fourth week, youโve quietly stopped opening the course altogether.
Because motivation is temporary. The energy you feel on Day 1 is like a sugar rush - it spikes, then crashes. What actually carries you through is discipline, clarity, and accountability.
Most people donโt finish because:
1.โ โ They take on too many courses at once, believing more is better, but end up doing nothing properly. 2.โ โ โ They donโt have a clear reason why theyโre learning - so the moment it gets hard, they lose interest. 3.โ โ โ They donโt have structure or accountability - no deadlines, no peers pushing them, no mentor checking in. 4.โ โ โ They get distracted by the next shiny topic, leaving half-finished lessons in the dust.
The truth is, courses donโt fail people. People fail courses.
Donโt chase 10 courses. Pick one. Define exactly why youโre doing it maybe to build a project, maybe to crack an interview.
Make small progress every single day, even if itโs 20 minutes. And surround yourself with a group or mentor who wonโt let you quietly quit.
Finishing a course is not about collecting certificates. Itโs about building a habit of seeing things through. And that habit compounds into real skills - the kind that actually change careers, businesses, and lives.
DataSense
๐ช๐ฒ ๐๐๐๐ ๐๐ฎ๐๐ป๐ฐ๐ต๐ฒ๐ฑ - ๐๐ ๐ฆ๐ผ๐ณ๐๐๐ฎ๐ฟ๐ฒ ๐๐ฟ๐ฐ๐ต๐ถ๐๐ฒ๐ฐ๐๐๐ฟ๐ฒ ๐ ๐ฎ๐๐๐ฒ๐ฟ๐ฐ๐น๐ฎ๐๐
Most people learn AI by building small demos. But ๐ฟ๐ฒ๐ฎ๐น ๐ฐ๐ผ๐บ๐ฝ๐ฎ๐ป๐ถ๐ฒ๐ ๐ฑ๐ผ๐ปโ๐ ๐๐ต๐ถ๐ฝ ๐ฑ๐ฒ๐บ๐ผ๐โฆ they ship production-grade AI systems.
Today we officially launched our new course where we teach how real AI software is designed, built, and deployed end-to-end โ from idea โ architecture โ agents โ production.
๐๐ฒ๐ฟ๐ฒโ๐ ๐๐ต๐ฎ๐ ๐๐ฒ ๐ฐ๐ผ๐๐ฒ๐ฟ๐
๐น How real AI applications are structured
๐น Chatbot vs Agent vs Workflow vs Multi-Agent systems
๐น How LLM + Tools actually work internally
๐น Tool calling, runtime execution & API architecture
๐น Memory, Knowledge, Action & Computation tools
๐น FastAPI layer for exposing AI systems
๐น CI/CD โ Docker โ Containers โ Kubernetes flow
๐น Scaling, Load Balancing & Self-Healing systems
๐น How companies move from prototype โ production
๐น Real architecture thinking for production AI
This course is for AI Engineers, Developers, and Architects who want to move beyond demos and understand how real AI systems are built in industry.
If you want to build production-grade AI, not just notebooks, this is for you.
๐ ๐๐ป๐ฟ๐ผ๐น๐น ๐ต๐ฒ๐ฟ๐ฒ: topmate.io/datasense/page/nGXIdGuoyDmNJ2m9u0
#AI #GenAI #AIEngineering #SoftwareArchitecture #Agents #LLM #SystemDesign #MLOps #Kubernetes #DataSense
4 days ago | [YT] | 0
View 1 reply
DataSense
๐ ๐ผ๐๐ ๐ฅ๐๐ ๐๐๐๐ผ๐ฟ๐ถ๐ฎ๐น๐ ๐๐ผ๐ฟ๐ธ ๐ถ๐ป ๐ฑ๐ฒ๐บ๐ผ๐ ๐ฎ๐ป๐ฑ ๐ฏ๐ฟ๐ฒ๐ฎ๐ธ ๐ถ๐ป ๐ฝ๐ฟ๐ผ๐ฑ๐๐ฐ๐๐ถ๐ผ๐ป.
This workshop is about understanding why that happens and how to fix it.
๐๐ป ๐๐ต๐ถ๐ ๐ณ๐ฟ๐ฒ๐ฒ ๐น๐ถ๐๐ฒ ๐๐ฒ๐๐๐ถ๐ผ๐ป, ๐๐ฒโ๐น๐น ๐ฏ๐๐ถ๐น๐ฑ ๐๐ผ๐๐ฟ ๐ณ๐ถ๐ฟ๐๐ ๐ฅ๐๐ ๐ฝ๐ฟ๐ผ๐ท๐ฒ๐ฐ๐ ๐ฒ๐ป๐ฑ-๐๐ผ-๐ฒ๐ป๐ฑ, then deliberately break it to understand:
1.โ โ Why toy RAG systems fail in real-world usage
2.โ โ โ The core layers of production-grade RAG architecture
3.โ โ โ Common issues teams face after deployment (latency, bad retrieval, cost, drift)
4.โ โ โ What matters beyond chunking & embeddings
5.โ โ โ How these issues are actually handled in production systems
This is not a copy-paste tutorial.
Youโll build a working RAG app first, see its limitations, and then learn how those problems are addressed in real production-grade applications.
๐ Sunday, 8 Feb | 8 AM IST
๐ฏ Free โข Live โข Limited spots
๐ ๐๐ป๐ฟ๐ผ๐น๐น ๐ต๐ฒ๐ฟ๐ฒ: topmate.io/datasense/page/LXPdG322V3zusdumql
4 days ago | [YT] | 0
View 0 replies
DataSense
๐ฆ๐ค๐ ๐ฃ๐ฟ๐ผ๐ท๐ฒ๐ฐ๐ ๐ช๐ผ๐ฟ๐ธ๐๐ต๐ผ๐ฝ #๐ฎ: ๐ฆ๐ป๐ฎ๐ฝ๐ฐ๐ต๐ฎ๐ ๐ฆ๐๐ฟ๐ฒ๐ฎ๐ธ ๐๐ป๐ฎ๐น๐๐๐ถ๐
Ever wondered how apps like Snapchat keep users coming back every single day?
In this hands-on workshop, weโll reverse-engineer the streak & retention logic using advanced SQL Window Functions and build real product-level analytics.
๐ ๐ฆ๐๐ป๐ฑ๐ฎ๐, ๐๐ฒ๐ฏ ๐ญ | โฐ ๐ต ๐๐ ๐๐ฆ๐ง
๐ช๐ต๐ฎ๐ ๐๐ผ๐โ๐น๐น ๐น๐ฒ๐ฎ๐ฟ๐ป:
โข Track user streaks and activity gaps
โข Predict churn using LAG/LEAD & rolling windows
โข Segment users by engagement consistency
โข Write interview-ready window function queries
This is not theory. Youโll build a complete retention analytics project that you can showcase in interviews.
๐ ๐ฅ๐ฒ๐ด๐ถ๐๐๐ฒ๐ฟ ๐ต๐ฒ๐ฟ๐ฒ: topmate.io/datasense/1921480
1 week ago | [YT] | 0
View 0 replies
DataSense
๐๐๐๐ ๐๐ฎ๐๐ป๐ฐ๐ต๐ฒ๐ฑ: ๐๐ฒ๐ป ๐๐ ๐ฃ๐ฟ๐ผ๐ท๐ฒ๐ฐ๐ ๐ฑ - ๐๐ด๐ฒ๐ป๐-๐๐ฟ๐ถ๐๐ฒ๐ป ๐๐ฎ๐๐ฎ ๐ ๐ถ๐ด๐ฟ๐ฎ๐๐ถ๐ผ๐ป
Weโve just released Gen AI Project 5, a hands-on, ๐ฏ-๐ต๐ผ๐๐ฟ ๐ฝ๐ฟ๐ผ๐ท๐ฒ๐ฐ๐ ๐๐ต๐ฒ๐ฟ๐ฒ ๐๐ผ๐ ๐ฏ๐๐ถ๐น๐ฑ ๐ฎ ๐ฟ๐ฒ๐ฎ๐น ๐๐-๐ฎ๐ด๐ฒ๐ป๐ ๐ฝ๐ผ๐๐ฒ๐ฟ๐ฒ๐ฑ ๐๐ง๐ ๐๐๐๐๐ฒ๐บ ๐๐ต๐ฎ๐ ๐บ๐ถ๐ด๐ฟ๐ฎ๐๐ฒ๐ ๐ฑ๐ฎ๐๐ฎ ๐ณ๐ฟ๐ผ๐บ ๐ฆ๐ป๐ผ๐๐ณ๐น๐ฎ๐ธ๐ฒ โ ๐๐ผ๐ผ๐ด๐น๐ฒ ๐๐น๐ผ๐๐ฑ using:
๐ค LLM Agents
โ๏ธ LangChain + FastAPI
๐งญ Agent Orchestration
๐ Cloud-grade ETL Design
๐ฌ Chat-based Control Panel
๐ Automated Sync & Versioning
This is how modern data platforms are moving:
From static pipelines โ to autonomous, reasoning agents.
๐ฃ๐ฒ๐ฟ๐ณ๐ฒ๐ฐ๐ ๐ณ๐ผ๐ฟ:
Data Engineers โข AI Engineers โข Cloud Architects โข GenAI Builders
๐ข๐๐๐ฐ๐ผ๐บ๐ฒ:
Youโll walk away with a production-style Agentic ETL Platform and a strong portfolio project.
๐ ๐๐ป๐ฟ๐ผ๐น๐น ๐ต๐ฒ๐ฟ๐ฒ: lnkd.in/gwawsXzH
hashtag#GenAI hashtag#DataEngineering hashtag#AIProjects hashtag#AgenticAI hashtag#ETL hashtag#LangChain hashtag#FastAPI hashtag#Snowflake hashtag#GoogleCloud hashtag#DataSense
2 weeks ago | [YT] | 1
View 0 replies
DataSense
๐๐ฒ๐ป๐๐ ๐ถ๐ป๐๐ฒ๐ฟ๐๐ถ๐ฒ๐๐ ๐ฎ๐ฟ๐ฒ๐ปโ๐ ๐ฎ๐ฏ๐ผ๐๐ ๐บ๐ฒ๐บ๐ผ๐ฟ๐ถ๐๐ถ๐ป๐ด ๐๐ผ๐ผ๐น๐ ๐ผ๐ฟ ๐ฏ๐๐๐๐๐ผ๐ฟ๐ฑ๐.
They test how you think, design, and explain real GenAI systems.
In this workshop, we focus only on what interviewers actually evaluate.
๐ช๐ต๐ฎ๐ ๐๐ฒโ๐น๐น ๐ฐ๐ผ๐๐ฒ๐ฟ:
1.โ โ Do you really need Machine Learning before GenAI (and when you donโt)
2.โ โ โ What GenAI interview questions actually look like
3.โ โ โ How interviewers expect you to explain agents
4.โ โ โ What RAG optimization really means in interviews
No theory overload. No hype. Just interview-relevant clarity.
๐ ๐ฅ๐ฒ๐ด๐ถ๐๐๐ฒ๐ฟ ๐ต๐ฒ๐ฟ๐ฒ: lnkd.in/g26j7axZ
1 month ago | [YT] | 2
View 0 replies
DataSense
๐๐ฒ๐ป๐๐ ๐ถ๐ป๐๐ฒ๐ฟ๐๐ถ๐ฒ๐๐ ๐ผ๐ณ๐๐ฒ๐ป ๐ณ๐ผ๐ฐ๐๐ ๐ผ๐ป ๐ต๐ผ๐ ๐๐ผ๐ ๐ฒ๐ ๐ฝ๐น๐ฎ๐ถ๐ป ๐๐๐๐๐ฒ๐บ ๐ฑ๐ฒ๐ฐ๐ถ๐๐ถ๐ผ๐ป๐, ๐ป๐ผ๐ ๐ท๐๐๐ ๐๐ต๐ฎ๐ ๐๐ผ๐ผ๐น๐ ๐๐ผ๐โ๐๐ฒ ๐๐๐ฒ๐ฑ.
Iโm hosting a session on How to Crack GenAI Interviews, covering how interviewers typically evaluate:
โข RAG and system design questions
โข agent and tool-based workflows
โข trade-offs around cost, latency, and reliability
Itโs practical and interview-focused.
๐๐ผ๐ผ๐ธ ๐ต๐ฒ๐ฟ๐ฒ: lnkd.in/gqkxKnF5
hashtag#GenAI hashtag#AIInterviews hashtag#LLM hashtag#RAG hashtag#GenAIEngineer
1 month ago | [YT] | 1
View 0 replies
DataSense
๐ ๐ผ๐๐ ๐ฝ๐ฒ๐ผ๐ฝ๐น๐ฒ ๐ธ๐ฒ๐ฒ๐ฝ ๐๐ฎ๐๐ฐ๐ต๐ถ๐ป๐ด ๐๐๐๐ผ๐ฟ๐ถ๐ฎ๐น๐, ๐๐ฎ๐ถ๐๐ถ๐ป๐ด ๐ณ๐ผ๐ฟ ๐๐ต๐ฒ โ๐ฟ๐ถ๐ด๐ต๐ ๐๐ถ๐บ๐ฒโ ๐๐ผ ๐๐๐ฎ๐ฟ๐ ๐ฏ๐๐ถ๐น๐ฑ๐ถ๐ป๐ด. ๐ง๐ฟ๐๐๐ต ๐ถ๐ - ๐๐ต๐ฎ๐ ๐บ๐ผ๐บ๐ฒ๐ป๐ ๐ป๐ฒ๐๐ฒ๐ฟ ๐ฐ๐ผ๐บ๐ฒ๐.
So hereโs your chance to build something real.
๐๐ผ๐ถ๐ป ๐ฃ๐ฟ๐ผ๐ท๐ฒ๐ฐ๐ ๐ถ๐ป ๐ญ๐ด๐ฌ โ ๐ง๐ต๐ฒ ๐๐ฒ๐ป๐๐ ๐๐๐ถ๐น๐ฑ ๐๐ต๐ฎ๐น๐น๐ฒ๐ป๐ด๐ฒ, ๐ฎ ๐ฏ-๐ต๐ผ๐๐ฟ ๐ต๐ฎ๐ป๐ฑ๐-๐ผ๐ป ๐๐ฝ๐ฟ๐ถ๐ป๐ where youโll get a real-world problem statement, build a working GenAI project in 2 hours, and spend the last hour reviewing and improving your solution together.
Limited seats. Enrollments are open.
๐ topmate.io/datasense/1807073
2 months ago | [YT] | 3
View 0 replies
DataSense
โ ๐๐ผ๐ปโ๐ ๐ฆ๐ธ๐ถ๐ฝ โ
๐ช๐ต๐ ๐ ๐ผ๐๐ ๐ฃ๐ฒ๐ผ๐ฝ๐น๐ฒ ๐๐ป๐ฟ๐ผ๐น๐น ๐ถ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐ฏ๐๐ ๐ก๐ฒ๐๐ฒ๐ฟ ๐๐ถ๐ป๐ถ๐๐ต?
Weโve all been there.
That rush of excitement when you click โ๐๐ป๐ฟ๐ผ๐น๐น.โ You imagine the new skill, the certificate on your LinkedIn, maybe even the career change. For a moment, it feels like your life just took a leap forward.
๐๐๐ ๐๐ต๐ฒ๐ปโฆ ๐ฟ๐ฒ๐ฎ๐น๐ถ๐๐.
The first week goes fine. The second week, youโre โbusy.โ By the third week, you tell yourself youโll โcatch up later.โ And by the fourth week, youโve quietly stopped opening the course altogether.
๐ช๐ต๐ ๐ฑ๐ผ๐ฒ๐ ๐๐ต๐ถ๐ ๐ต๐ฎ๐ฝ๐ฝ๐ฒ๐ป ๐๐ผ ๐๐ผ ๐บ๐ฎ๐ป๐ ๐ผ๐ณ ๐๐?
Because motivation is temporary. The energy you feel on Day 1 is like a sugar rush - it spikes, then crashes. What actually carries you through is discipline, clarity, and accountability.
Most people donโt finish because:
1.โ โ They take on too many courses at once, believing more is better, but end up doing nothing properly.
2.โ โ โ They donโt have a clear reason why theyโre learning - so the moment it gets hard, they lose interest.
3.โ โ โ They donโt have structure or accountability - no deadlines, no peers pushing them, no mentor checking in.
4.โ โ โ They get distracted by the next shiny topic, leaving half-finished lessons in the dust.
The truth is, courses donโt fail people. People fail courses.
๐ฆ๐ผ ๐๐ต๐ฎ๐โ๐ ๐๐ต๐ฒ ๐ณ๐ถ๐ ?
Donโt chase 10 courses. Pick one. Define exactly why youโre doing it maybe to build a project, maybe to crack an interview.
Make small progress every single day, even if itโs 20 minutes. And surround yourself with a group or mentor who wonโt let you quietly quit.
Finishing a course is not about collecting certificates. Itโs about building a habit of seeing things through. And that habit compounds into real skills - the kind that actually change careers, businesses, and lives.
๐ฆ๐ผ, ๐ฎ๐๐ธ ๐๐ผ๐๐ฟ๐๐ฒ๐น๐ณ ๐ต๐ผ๐ป๐ฒ๐๐๐น๐:
๐ How many courses have you started but left unfinished?
๐ And what would happen if, this time, you finally saw it through?
4 months ago | [YT] | 3
View 0 replies
DataSense
๐ช๐ฎ๐๐ฐ๐ต ๐ง๐ต๐ฒ๐๐ฒ ๐๐ฟ๐ฒ๐ฒ ๐ฉ๐ถ๐ฑ๐ฒ๐ผ๐ ๐ฏ๐ ๐๐ฎ๐๐ฎ๐ฆ๐ฒ๐ป๐๐ฒ ๐๐ผ ๐๐ป๐๐๐ฎ๐ป๐๐น๐ ๐จ๐ฝ๐๐ธ๐ถ๐น๐น
Curated for developers, product minds & AI learners.
๐ญ. ๐ช๐ต๐ฎ๐ ๐ถ๐ ๐ฎ๐ป ๐๐ ๐๐ด๐ฒ๐ป๐? ๐๐๐ถ๐น๐ฑ ๐ผ๐ป๐ฒ ๐๐๐ถ๐ป๐ด ๐๐ต๐ฒ ๐ฅ๐๐๐๐ง ๐๐ฟ๐ฎ๐บ๐ฒ๐๐ผ๐ฟ๐ธ
lnkd.in/gx5xWZeD
๐ฎ. ๐ฅ๐๐ ๐๐ต๐ฎ๐๐ฏ๐ผ๐ ๐ง๐๐๐ผ๐ฟ๐ถ๐ฎ๐น โ ๐๐ฒ๐ฎ๐ฟ๐ป ๐ต๐ผ๐ ๐ฅ๐ฒ๐๐ฟ๐ถ๐ฒ๐๐ฎ๐น-๐๐๐ด๐บ๐ฒ๐ป๐๐ฒ๐ฑ ๐๐ฒ๐ป๐ฒ๐ฟ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐ฟ๐ธ๐
lnkd.in/gifFCcQq
๐ฏ. ๐ก๐ฎ๐๐๐ฟ๐ฎ๐น ๐๐ฎ๐ป๐ด๐๐ฎ๐ด๐ฒ ๐๐ผ ๐ฆ๐ค๐ ๐ฃ๐ฟ๐ผ๐ท๐ฒ๐ฐ๐ โ ๐๐ผ๐ป๐๐ฒ๐ฟ๐ ๐๐๐ฒ๐ฟ ๐พ๐๐ฒ๐๐๐ถ๐ผ๐ป๐ ๐ถ๐ป๐๐ผ ๐พ๐๐ฒ๐ฟ๐ถ๐ฒ๐
lnkd.in/gMaq4WQ2
๐ฐ. ๐ช๐ต๐ฎ๐ ๐ถ๐ ๐๐ฎ๐ป๐ด๐ด๐ฟ๐ฎ๐ฝ๐ต- ๐๐ป๐ฑ ๐๐ผ ๐๐ป๐ฑ ๐ฃ๐ฟ๐ผ๐ท๐ฒ๐ฐ๐
lnkd.in/gFhHwWbd
๐ฑ. ๐๐ถ๐๐๐๐ฏ ๐๐ฐ๐๐ถ๐ผ๐ป๐ ๐๐ฟ๐ฎ๐๐ต ๐๐ผ๐๐ฟ๐๐ฒ โ ๐๐๐๐ผ๐บ๐ฎ๐๐ฒ ๐๐ผ๐ฟ๐ธ๐ณ๐น๐ผ๐๐ ๐น๐ถ๐ธ๐ฒ ๐ฎ ๐ฝ๐ฟ๐ผ
lnkd.in/g9G8Pfdw
๐ฒ. ๐ฅ๐๐ ๐ถ๐ป ๐ก๐ด๐ก (๐ก๐ผ ๐๐ผ๐ฑ๐ฒ) โ ๐๐๐ถ๐น๐ฑ ๐๐บ๐ฎ๐ฟ๐ ๐๐ผ๐ฟ๐ธ๐ณ๐น๐ผ๐๐ ๐๐ถ๐๐ต๐ผ๐๐ ๐๐ฟ๐ถ๐๐ถ๐ป๐ด ๐ฐ๐ผ๐ฑ๐ฒ
lnkd.in/gKrdS9gK
๐ณ. ๐ช๐ต๐ฎ๐ ๐ถ๐ ๐ง๐ผ๐ผ๐น ๐๐ฎ๐น๐น๐ถ๐ป๐ด? โ ๐ฃ๐น๐๐ด ๐ฟ๐ฒ๐ฎ๐น-๐๐ผ๐ฟ๐น๐ฑ ๐๐ผ๐ผ๐น๐ ๐ถ๐ป๐๐ผ ๐๐
lnkd.in/g987iFkF
๐ด. ๐๐ผ๐ ๐๐ผ ๐ฆ๐ฐ๐ฎ๐น๐ฒ ๐ฎ๐ป ๐๐ฝ๐ฝ๐น๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป โ ๐๐ฟ๐ฐ๐ต๐ถ๐๐ฒ๐ฐ๐ ๐ณ๐ผ๐ฟ ๐ญ ๐๐๐ฒ๐ฟ ๐ผ๐ฟ ๐ญ ๐บ๐ถ๐น๐น๐ถ๐ผ๐ป
lnkd.in/gF_c4w8Z
๐ต. ๐ช๐ต๐ฎ๐ ๐ถ๐ ๐๐ผ๐ฐ๐ธ๐ฒ๐ฟ? ๐๐๐ถ๐น๐ฑ ๐ฌ๐ผ๐๐ฟ ๐๐ถ๐ฟ๐๐ ๐๐ผ๐ฐ๐ธ๐ฒ๐ฟ ๐๐บ๐ฎ๐ด๐ฒ
lnkd.in/g2awvdeC
8 months ago | [YT] | 4
View 0 replies
DataSense
๐ ๐๐ฎ๐๐ป๐ฐ๐ต๐ถ๐ป๐ด ๐ฎ ๐๐ฎ๐ป๐ฑ๐-๐ข๐ป ๐ช๐ผ๐ฟ๐ธ๐๐ต๐ผ๐ฝ: ๐๐๐ถ๐น๐ฑ ๐ฌ๐ผ๐๐ฟ ๐ข๐๐ป ๐๐ป๐๐ฒ๐ฟ๐ฝ๐ฟ๐ถ๐๐ฒ ๐๐ ๐๐ต๐ฎ๐๐ฏ๐ผ๐ ๐๐ถ๐๐ต ๐ฆ๐บ๐ฎ๐ฟ๐ ๐๐ฎ๐ฐ๐ต๐ถ๐ป๐ด!
LLMs are powerfulโbut theyโre ๐๐น๐ผ๐ ๐ฎ๐ป๐ฑ ๐ฒ๐ ๐ฝ๐ฒ๐ป๐๐ถ๐๐ฒ when every query hits the model.
Letโs change that.
In this 2-day weekend workshop, youโll build a production-ready chatbot that:
โ Answers user queries via LLM
โ Caches similar questions using semantic similarity (FAISS/Pinecone)
โ Avoids redundant LLM calls
โ Is deployed using FastAPI, Docker, and GitHub Actions
๐ก Whether youโre building internal Q&A systems, customer support bots, or knowledge assistantsโthis is built for you.
๐ฏ ๐ฅ๐ฒ๐ด๐ถ๐๐๐ฒ๐ฟ ๐ป๐ผ๐: topmate.io/datasense/1479867
๐๐๐ถ๐ฟ๐๐ ๐ญ๐ฌ ๐๐๐ฒ๐ฟ๐ ๐ด๐ฒ๐ ๐ฎ๐ฌ% ๐ข๐๐ ๐๐ถ๐๐ต ๐ฐ๐ผ๐ฑ๐ฒ ๐๐๐๐๐
#AI #Chatbots #LLM #FastAPI #Docker #Langchain #SemanticCaching #VectorDB #EnterpriseAI #PythonWorkshop #GitHubActions #LLMApps
10 months ago | [YT] | 1
View 0 replies
Load more