Your 1 Stop Solution to Data Analytics ๐Ÿ‡ฎ๐Ÿ‡ณ๐Ÿ‡บ๐Ÿ‡ธ
๐ŸŽž๏ธDaily Shorts
๐Ÿ“ˆBig Announcement Soon
๐Ÿ’กExcel,SQL,Python,Tableau
๐ŸคŸYour career guide


DataSense

๐—ช๐—ฒ ๐—๐˜‚๐˜€๐˜ ๐—Ÿ๐—ฎ๐˜‚๐—ป๐—ฐ๐—ต๐—ฒ๐—ฑ - ๐—”๐—œ ๐—ฆ๐—ผ๐—ณ๐˜๐˜„๐—ฎ๐—ฟ๐—ฒ ๐—”๐—ฟ๐—ฐ๐—ต๐—ถ๐˜๐—ฒ๐—ฐ๐˜๐˜‚๐—ฟ๐—ฒ ๐— ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ๐—ฐ๐—น๐—ฎ๐˜€๐˜€

Most people learn AI by building small demos. But ๐—ฟ๐—ฒ๐—ฎ๐—น ๐—ฐ๐—ผ๐—บ๐—ฝ๐—ฎ๐—ป๐—ถ๐—ฒ๐˜€ ๐—ฑ๐—ผ๐—ปโ€™๐˜ ๐˜€๐—ต๐—ถ๐—ฝ ๐—ฑ๐—ฒ๐—บ๐—ผ๐˜€โ€ฆ they ship production-grade AI systems.

Today we officially launched our new course where we teach how real AI software is designed, built, and deployed end-to-end โ€” from idea โ†’ architecture โ†’ agents โ†’ production.

๐—›๐—ฒ๐—ฟ๐—ฒโ€™๐˜€ ๐˜„๐—ต๐—ฎ๐˜ ๐˜„๐—ฒ ๐—ฐ๐—ผ๐˜ƒ๐—ฒ๐—ฟ๐Ÿ‘‡

๐Ÿ”น How real AI applications are structured

๐Ÿ”น Chatbot vs Agent vs Workflow vs Multi-Agent systems

๐Ÿ”น How LLM + Tools actually work internally

๐Ÿ”น Tool calling, runtime execution & API architecture

๐Ÿ”น Memory, Knowledge, Action & Computation tools

๐Ÿ”น FastAPI layer for exposing AI systems

๐Ÿ”น CI/CD โ†’ Docker โ†’ Containers โ†’ Kubernetes flow

๐Ÿ”น Scaling, Load Balancing & Self-Healing systems

๐Ÿ”น How companies move from prototype โ†’ production

๐Ÿ”น Real architecture thinking for production AI

This course is for AI Engineers, Developers, and Architects who want to move beyond demos and understand how real AI systems are built in industry.

If you want to build production-grade AI, not just notebooks, this is for you.

๐Ÿ‘‰ ๐—˜๐—ป๐—ฟ๐—ผ๐—น๐—น ๐—ต๐—ฒ๐—ฟ๐—ฒ: topmate.io/datasense/page/nGXIdGuoyDmNJ2m9u0

#AI #GenAI #AIEngineering #SoftwareArchitecture #Agents #LLM #SystemDesign #MLOps #Kubernetes #DataSense

4 days ago | [YT] | 0

DataSense

๐— ๐—ผ๐˜€๐˜ ๐—ฅ๐—”๐—š ๐˜๐˜‚๐˜๐—ผ๐—ฟ๐—ถ๐—ฎ๐—น๐˜€ ๐˜„๐—ผ๐—ฟ๐—ธ ๐—ถ๐—ป ๐—ฑ๐—ฒ๐—บ๐—ผ๐˜€ ๐—ฎ๐—ป๐—ฑ ๐—ฏ๐—ฟ๐—ฒ๐—ฎ๐—ธ ๐—ถ๐—ป ๐—ฝ๐—ฟ๐—ผ๐—ฑ๐˜‚๐—ฐ๐˜๐—ถ๐—ผ๐—ป.

This workshop is about understanding why that happens and how to fix it.

๐—œ๐—ป ๐˜๐—ต๐—ถ๐˜€ ๐—ณ๐—ฟ๐—ฒ๐—ฒ ๐—น๐—ถ๐˜ƒ๐—ฒ ๐˜€๐—ฒ๐˜€๐˜€๐—ถ๐—ผ๐—ป, ๐˜„๐—ฒโ€™๐—น๐—น ๐—ฏ๐˜‚๐—ถ๐—น๐—ฑ ๐˜†๐—ผ๐˜‚๐—ฟ ๐—ณ๐—ถ๐—ฟ๐˜€๐˜ ๐—ฅ๐—”๐—š ๐—ฝ๐—ฟ๐—ผ๐—ท๐—ฒ๐—ฐ๐˜ ๐—ฒ๐—ป๐—ฑ-๐˜๐—ผ-๐—ฒ๐—ป๐—ฑ, then deliberately break it to understand:

1.โ  โ Why toy RAG systems fail in real-world usage

2.โ  โ โ The core layers of production-grade RAG architecture

3.โ  โ โ Common issues teams face after deployment (latency, bad retrieval, cost, drift)

4.โ  โ โ What matters beyond chunking & embeddings

5.โ  โ โ How these issues are actually handled in production systems

This is not a copy-paste tutorial.

Youโ€™ll build a working RAG app first, see its limitations, and then learn how those problems are addressed in real production-grade applications.


๐Ÿ“… Sunday, 8 Feb | 8 AM IST

๐ŸŽฏ Free โ€ข Live โ€ข Limited spots



๐Ÿ‘‰ ๐—˜๐—ป๐—ฟ๐—ผ๐—น๐—น ๐—ต๐—ฒ๐—ฟ๐—ฒ: topmate.io/datasense/page/LXPdG322V3zusdumql

4 days ago | [YT] | 0

DataSense

๐—ฆ๐—ค๐—Ÿ ๐—ฃ๐—ฟ๐—ผ๐—ท๐—ฒ๐—ฐ๐˜ ๐—ช๐—ผ๐—ฟ๐—ธ๐˜€๐—ต๐—ผ๐—ฝ #๐Ÿฎ: ๐—ฆ๐—ป๐—ฎ๐—ฝ๐—ฐ๐—ต๐—ฎ๐˜ ๐—ฆ๐˜๐—ฟ๐—ฒ๐—ฎ๐—ธ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜€๐—ถ๐˜€

Ever wondered how apps like Snapchat keep users coming back every single day?

In this hands-on workshop, weโ€™ll reverse-engineer the streak & retention logic using advanced SQL Window Functions and build real product-level analytics.

๐Ÿ“… ๐—ฆ๐˜‚๐—ป๐—ฑ๐—ฎ๐˜†, ๐—™๐—ฒ๐—ฏ ๐Ÿญ | โฐ ๐Ÿต ๐—”๐—  ๐—œ๐—ฆ๐—ง

๐—ช๐—ต๐—ฎ๐˜ ๐˜†๐—ผ๐˜‚โ€™๐—น๐—น ๐—น๐—ฒ๐—ฎ๐—ฟ๐—ป:

โ€ข Track user streaks and activity gaps

โ€ข Predict churn using LAG/LEAD & rolling windows

โ€ข Segment users by engagement consistency

โ€ข Write interview-ready window function queries

This is not theory. Youโ€™ll build a complete retention analytics project that you can showcase in interviews.

๐Ÿ‘‰ ๐—ฅ๐—ฒ๐—ด๐—ถ๐˜€๐˜๐—ฒ๐—ฟ ๐—ต๐—ฒ๐—ฟ๐—ฒ: topmate.io/datasense/1921480

1 week ago | [YT] | 0

DataSense

๐—๐˜‚๐˜€๐˜ ๐—Ÿ๐—ฎ๐˜‚๐—ป๐—ฐ๐—ต๐—ฒ๐—ฑ: ๐—š๐—ฒ๐—ป ๐—”๐—œ ๐—ฃ๐—ฟ๐—ผ๐—ท๐—ฒ๐—ฐ๐˜ ๐Ÿฑ - ๐—”๐—ด๐—ฒ๐—ป๐˜-๐——๐—ฟ๐—ถ๐˜ƒ๐—ฒ๐—ป ๐——๐—ฎ๐˜๐—ฎ ๐— ๐—ถ๐—ด๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป

Weโ€™ve just released Gen AI Project 5, a hands-on, ๐Ÿฏ-๐—ต๐—ผ๐˜‚๐—ฟ ๐—ฝ๐—ฟ๐—ผ๐—ท๐—ฒ๐—ฐ๐˜ ๐˜„๐—ต๐—ฒ๐—ฟ๐—ฒ ๐˜†๐—ผ๐˜‚ ๐—ฏ๐˜‚๐—ถ๐—น๐—ฑ ๐—ฎ ๐—ฟ๐—ฒ๐—ฎ๐—น ๐—”๐—œ-๐—ฎ๐—ด๐—ฒ๐—ป๐˜ ๐—ฝ๐—ผ๐˜„๐—ฒ๐—ฟ๐—ฒ๐—ฑ ๐—˜๐—ง๐—Ÿ ๐˜€๐˜†๐˜€๐˜๐—ฒ๐—บ ๐˜๐—ต๐—ฎ๐˜ ๐—บ๐—ถ๐—ด๐—ฟ๐—ฎ๐˜๐—ฒ๐˜€ ๐—ฑ๐—ฎ๐˜๐—ฎ ๐—ณ๐—ฟ๐—ผ๐—บ ๐—ฆ๐—ป๐—ผ๐˜„๐—ณ๐—น๐—ฎ๐—ธ๐—ฒ โ†’ ๐—š๐—ผ๐—ผ๐—ด๐—น๐—ฒ ๐—–๐—น๐—ผ๐˜‚๐—ฑ using:

๐Ÿค– LLM Agents
โš™๏ธ LangChain + FastAPI
๐Ÿงญ Agent Orchestration
๐Ÿ“Š Cloud-grade ETL Design
๐Ÿ’ฌ Chat-based Control Panel
๐Ÿ” Automated Sync & Versioning

This is how modern data platforms are moving:
From static pipelines โžœ to autonomous, reasoning agents.

๐—ฃ๐—ฒ๐—ฟ๐—ณ๐—ฒ๐—ฐ๐˜ ๐—ณ๐—ผ๐—ฟ:
Data Engineers โ€ข AI Engineers โ€ข Cloud Architects โ€ข GenAI Builders

๐—ข๐˜‚๐˜๐—ฐ๐—ผ๐—บ๐—ฒ:
Youโ€™ll walk away with a production-style Agentic ETL Platform and a strong portfolio project.

๐Ÿ‘‰ ๐—˜๐—ป๐—ฟ๐—ผ๐—น๐—น ๐—ต๐—ฒ๐—ฟ๐—ฒ: lnkd.in/gwawsXzH

hashtag#GenAI hashtag#DataEngineering hashtag#AIProjects hashtag#AgenticAI hashtag#ETL hashtag#LangChain hashtag#FastAPI hashtag#Snowflake hashtag#GoogleCloud hashtag#DataSense

2 weeks ago | [YT] | 1

DataSense

๐—š๐—ฒ๐—ป๐—”๐—œ ๐—ถ๐—ป๐˜๐—ฒ๐—ฟ๐˜ƒ๐—ถ๐—ฒ๐˜„๐˜€ ๐—ฎ๐—ฟ๐—ฒ๐—ปโ€™๐˜ ๐—ฎ๐—ฏ๐—ผ๐˜‚๐˜ ๐—บ๐—ฒ๐—บ๐—ผ๐—ฟ๐—ถ๐˜‡๐—ถ๐—ป๐—ด ๐˜๐—ผ๐—ผ๐—น๐˜€ ๐—ผ๐—ฟ ๐—ฏ๐˜‚๐˜‡๐˜‡๐˜„๐—ผ๐—ฟ๐—ฑ๐˜€.


They test how you think, design, and explain real GenAI systems.


In this workshop, we focus only on what interviewers actually evaluate.


๐—ช๐—ต๐—ฎ๐˜ ๐˜„๐—ฒโ€™๐—น๐—น ๐—ฐ๐—ผ๐˜ƒ๐—ฒ๐—ฟ:

1.โ  โ Do you really need Machine Learning before GenAI (and when you donโ€™t)

2.โ  โ โ What GenAI interview questions actually look like

3.โ  โ โ How interviewers expect you to explain agents

4.โ  โ โ What RAG optimization really means in interviews


No theory overload. No hype. Just interview-relevant clarity.


๐Ÿ‘‰ ๐—ฅ๐—ฒ๐—ด๐—ถ๐˜€๐˜๐—ฒ๐—ฟ ๐—ต๐—ฒ๐—ฟ๐—ฒ: lnkd.in/g26j7axZ

1 month ago | [YT] | 2

DataSense

๐—š๐—ฒ๐—ป๐—”๐—œ ๐—ถ๐—ป๐˜๐—ฒ๐—ฟ๐˜ƒ๐—ถ๐—ฒ๐˜„๐˜€ ๐—ผ๐—ณ๐˜๐—ฒ๐—ป ๐—ณ๐—ผ๐—ฐ๐˜‚๐˜€ ๐—ผ๐—ป ๐—ต๐—ผ๐˜„ ๐˜†๐—ผ๐˜‚ ๐—ฒ๐˜…๐—ฝ๐—น๐—ฎ๐—ถ๐—ป ๐˜€๐˜†๐˜€๐˜๐—ฒ๐—บ ๐—ฑ๐—ฒ๐—ฐ๐—ถ๐˜€๐—ถ๐—ผ๐—ป๐˜€, ๐—ป๐—ผ๐˜ ๐—ท๐˜‚๐˜€๐˜ ๐˜„๐—ต๐—ฎ๐˜ ๐˜๐—ผ๐—ผ๐—น๐˜€ ๐˜†๐—ผ๐˜‚โ€™๐˜ƒ๐—ฒ ๐˜‚๐˜€๐—ฒ๐—ฑ.

Iโ€™m hosting a session on How to Crack GenAI Interviews, covering how interviewers typically evaluate:

โ€ข RAG and system design questions
โ€ข agent and tool-based workflows
โ€ข trade-offs around cost, latency, and reliability

Itโ€™s practical and interview-focused.

๐—•๐—ผ๐—ผ๐—ธ ๐—ต๐—ฒ๐—ฟ๐—ฒ: lnkd.in/gqkxKnF5

hashtag#GenAI hashtag#AIInterviews hashtag#LLM hashtag#RAG hashtag#GenAIEngineer

1 month ago | [YT] | 1

DataSense

๐— ๐—ผ๐˜€๐˜ ๐—ฝ๐—ฒ๐—ผ๐—ฝ๐—น๐—ฒ ๐—ธ๐—ฒ๐—ฒ๐—ฝ ๐˜„๐—ฎ๐˜๐—ฐ๐—ต๐—ถ๐—ป๐—ด ๐˜๐˜‚๐˜๐—ผ๐—ฟ๐—ถ๐—ฎ๐—น๐˜€, ๐˜„๐—ฎ๐—ถ๐˜๐—ถ๐—ป๐—ด ๐—ณ๐—ผ๐—ฟ ๐˜๐—ต๐—ฒ โ€œ๐—ฟ๐—ถ๐—ด๐—ต๐˜ ๐˜๐—ถ๐—บ๐—ฒโ€ ๐˜๐—ผ ๐˜€๐˜๐—ฎ๐—ฟ๐˜ ๐—ฏ๐˜‚๐—ถ๐—น๐—ฑ๐—ถ๐—ป๐—ด. ๐—ง๐—ฟ๐˜‚๐˜๐—ต ๐—ถ๐˜€ - ๐˜๐—ต๐—ฎ๐˜ ๐—บ๐—ผ๐—บ๐—ฒ๐—ป๐˜ ๐—ป๐—ฒ๐˜ƒ๐—ฒ๐—ฟ ๐—ฐ๐—ผ๐—บ๐—ฒ๐˜€.


So hereโ€™s your chance to build something real.

๐—๐—ผ๐—ถ๐—ป ๐—ฃ๐—ฟ๐—ผ๐—ท๐—ฒ๐—ฐ๐˜ ๐—ถ๐—ป ๐Ÿญ๐Ÿด๐Ÿฌ โ€“ ๐—ง๐—ต๐—ฒ ๐—š๐—ฒ๐—ป๐—”๐—œ ๐—•๐˜‚๐—ถ๐—น๐—ฑ ๐—–๐—ต๐—ฎ๐—น๐—น๐—ฒ๐—ป๐—ด๐—ฒ, ๐—ฎ ๐Ÿฏ-๐—ต๐—ผ๐˜‚๐—ฟ ๐—ต๐—ฎ๐—ป๐—ฑ๐˜€-๐—ผ๐—ป ๐˜€๐—ฝ๐—ฟ๐—ถ๐—ป๐˜ where youโ€™ll get a real-world problem statement, build a working GenAI project in 2 hours, and spend the last hour reviewing and improving your solution together.


Limited seats. Enrollments are open.

๐Ÿ‘‰ topmate.io/datasense/1807073

2 months ago | [YT] | 3

DataSense

โŒ ๐——๐—ผ๐—ปโ€™๐˜ ๐—ฆ๐—ธ๐—ถ๐—ฝ โŒ

๐—ช๐—ต๐˜† ๐— ๐—ผ๐˜€๐˜ ๐—ฃ๐—ฒ๐—ผ๐—ฝ๐—น๐—ฒ ๐—˜๐—ป๐—ฟ๐—ผ๐—น๐—น ๐—ถ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐—ฏ๐˜‚๐˜ ๐—ก๐—ฒ๐˜ƒ๐—ฒ๐—ฟ ๐—™๐—ถ๐—ป๐—ถ๐˜€๐—ต?

Weโ€™ve all been there.

That rush of excitement when you click โ€œ๐—˜๐—ป๐—ฟ๐—ผ๐—น๐—น.โ€ You imagine the new skill, the certificate on your LinkedIn, maybe even the career change. For a moment, it feels like your life just took a leap forward.

๐—•๐˜‚๐˜ ๐˜๐—ต๐—ฒ๐—ปโ€ฆ ๐—ฟ๐—ฒ๐—ฎ๐—น๐—ถ๐˜๐˜†.

The first week goes fine. The second week, youโ€™re โ€œbusy.โ€ By the third week, you tell yourself youโ€™ll โ€œcatch up later.โ€ And by the fourth week, youโ€™ve quietly stopped opening the course altogether.

๐—ช๐—ต๐˜† ๐—ฑ๐—ผ๐—ฒ๐˜€ ๐˜๐—ต๐—ถ๐˜€ ๐—ต๐—ฎ๐—ฝ๐—ฝ๐—ฒ๐—ป ๐˜๐—ผ ๐˜€๐—ผ ๐—บ๐—ฎ๐—ป๐˜† ๐—ผ๐—ณ ๐˜‚๐˜€?

Because motivation is temporary. The energy you feel on Day 1 is like a sugar rush - it spikes, then crashes. What actually carries you through is discipline, clarity, and accountability.

Most people donโ€™t finish because:


1.โ  โ They take on too many courses at once, believing more is better, but end up doing nothing properly.
2.โ  โ โ They donโ€™t have a clear reason why theyโ€™re learning - so the moment it gets hard, they lose interest.
3.โ  โ โ They donโ€™t have structure or accountability - no deadlines, no peers pushing them, no mentor checking in.
4.โ  โ โ They get distracted by the next shiny topic, leaving half-finished lessons in the dust.

The truth is, courses donโ€™t fail people. People fail courses.

๐—ฆ๐—ผ ๐˜„๐—ต๐—ฎ๐˜โ€™๐˜€ ๐˜๐—ต๐—ฒ ๐—ณ๐—ถ๐˜…?

Donโ€™t chase 10 courses. Pick one. Define exactly why youโ€™re doing it maybe to build a project, maybe to crack an interview.

Make small progress every single day, even if itโ€™s 20 minutes. And surround yourself with a group or mentor who wonโ€™t let you quietly quit.

Finishing a course is not about collecting certificates. Itโ€™s about building a habit of seeing things through. And that habit compounds into real skills - the kind that actually change careers, businesses, and lives.

๐—ฆ๐—ผ, ๐—ฎ๐˜€๐—ธ ๐˜†๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐—น๐—ณ ๐—ต๐—ผ๐—ป๐—ฒ๐˜€๐˜๐—น๐˜†:

๐Ÿ‘‰ How many courses have you started but left unfinished?

๐Ÿ‘‰ And what would happen if, this time, you finally saw it through?

4 months ago | [YT] | 3

DataSense

๐—ช๐—ฎ๐˜๐—ฐ๐—ต ๐—ง๐—ต๐—ฒ๐˜€๐—ฒ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—ฉ๐—ถ๐—ฑ๐—ฒ๐—ผ๐˜€ ๐—ฏ๐˜† ๐——๐—ฎ๐˜๐—ฎ๐—ฆ๐—ฒ๐—ป๐˜€๐—ฒ ๐˜๐—ผ ๐—œ๐—ป๐˜€๐˜๐—ฎ๐—ป๐˜๐—น๐˜† ๐—จ๐—ฝ๐˜€๐—ธ๐—ถ๐—น๐—น

Curated for developers, product minds & AI learners.

๐Ÿญ. ๐—ช๐—ต๐—ฎ๐˜ ๐—ถ๐˜€ ๐—ฎ๐—ป ๐—”๐—œ ๐—”๐—ด๐—ฒ๐—ป๐˜? ๐—•๐˜‚๐—ถ๐—น๐—ฑ ๐—ผ๐—ป๐—ฒ ๐˜‚๐˜€๐—ถ๐—ป๐—ด ๐˜๐—ต๐—ฒ ๐—ฅ๐—˜๐—”๐—–๐—ง ๐—™๐—ฟ๐—ฎ๐—บ๐—ฒ๐˜„๐—ผ๐—ฟ๐—ธ

lnkd.in/gx5xWZeD

๐Ÿฎ. ๐—ฅ๐—”๐—š ๐—–๐—ต๐—ฎ๐˜๐—ฏ๐—ผ๐˜ ๐—ง๐˜‚๐˜๐—ผ๐—ฟ๐—ถ๐—ฎ๐—น โ€“ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป ๐—ต๐—ผ๐˜„ ๐—ฅ๐—ฒ๐˜๐—ฟ๐—ถ๐—ฒ๐˜ƒ๐—ฎ๐—น-๐—”๐˜‚๐—ด๐—บ๐—ฒ๐—ป๐˜๐—ฒ๐—ฑ ๐—š๐—ฒ๐—ป๐—ฒ๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐˜„๐—ผ๐—ฟ๐—ธ๐˜€

lnkd.in/gifFCcQq

๐Ÿฏ. ๐—ก๐—ฎ๐˜๐˜‚๐—ฟ๐—ฎ๐—น ๐—Ÿ๐—ฎ๐—ป๐—ด๐˜‚๐—ฎ๐—ด๐—ฒ ๐˜๐—ผ ๐—ฆ๐—ค๐—Ÿ ๐—ฃ๐—ฟ๐—ผ๐—ท๐—ฒ๐—ฐ๐˜ โ€“ ๐—–๐—ผ๐—ป๐˜ƒ๐—ฒ๐—ฟ๐˜ ๐˜‚๐˜€๐—ฒ๐—ฟ ๐—พ๐˜‚๐—ฒ๐˜€๐˜๐—ถ๐—ผ๐—ป๐˜€ ๐—ถ๐—ป๐˜๐—ผ ๐—พ๐˜‚๐—ฒ๐—ฟ๐—ถ๐—ฒ๐˜€

lnkd.in/gMaq4WQ2

๐Ÿฐ. ๐—ช๐—ต๐—ฎ๐˜ ๐—ถ๐˜€ ๐—Ÿ๐—ฎ๐—ป๐—ด๐—ด๐—ฟ๐—ฎ๐—ฝ๐—ต- ๐—˜๐—ป๐—ฑ ๐˜๐—ผ ๐—˜๐—ป๐—ฑ ๐—ฃ๐—ฟ๐—ผ๐—ท๐—ฒ๐—ฐ๐˜

lnkd.in/gFhHwWbd

๐Ÿฑ. ๐—š๐—ถ๐˜๐—›๐˜‚๐—ฏ ๐—”๐—ฐ๐˜๐—ถ๐—ผ๐—ป๐˜€ ๐—–๐—ฟ๐—ฎ๐˜€๐—ต ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ โ€“ ๐—”๐˜‚๐˜๐—ผ๐—บ๐—ฎ๐˜๐—ฒ ๐˜„๐—ผ๐—ฟ๐—ธ๐—ณ๐—น๐—ผ๐˜„๐˜€ ๐—น๐—ถ๐—ธ๐—ฒ ๐—ฎ ๐—ฝ๐—ฟ๐—ผ

lnkd.in/g9G8Pfdw

๐Ÿฒ. ๐—ฅ๐—”๐—š ๐—ถ๐—ป ๐—ก๐Ÿด๐—ก (๐—ก๐—ผ ๐—–๐—ผ๐—ฑ๐—ฒ) โ€“ ๐—•๐˜‚๐—ถ๐—น๐—ฑ ๐˜€๐—บ๐—ฎ๐—ฟ๐˜ ๐˜„๐—ผ๐—ฟ๐—ธ๐—ณ๐—น๐—ผ๐˜„๐˜€ ๐˜„๐—ถ๐˜๐—ต๐—ผ๐˜‚๐˜ ๐˜„๐—ฟ๐—ถ๐˜๐—ถ๐—ป๐—ด ๐—ฐ๐—ผ๐—ฑ๐—ฒ

lnkd.in/gKrdS9gK

๐Ÿณ. ๐—ช๐—ต๐—ฎ๐˜ ๐—ถ๐˜€ ๐—ง๐—ผ๐—ผ๐—น ๐—–๐—ฎ๐—น๐—น๐—ถ๐—ป๐—ด? โ€“ ๐—ฃ๐—น๐˜‚๐—ด ๐—ฟ๐—ฒ๐—ฎ๐—น-๐˜„๐—ผ๐—ฟ๐—น๐—ฑ ๐˜๐—ผ๐—ผ๐—น๐˜€ ๐—ถ๐—ป๐˜๐—ผ ๐—”๐—œ

lnkd.in/g987iFkF

๐Ÿด. ๐—›๐—ผ๐˜„ ๐˜๐—ผ ๐—ฆ๐—ฐ๐—ฎ๐—น๐—ฒ ๐—ฎ๐—ป ๐—”๐—ฝ๐—ฝ๐—น๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป โ€“ ๐—”๐—ฟ๐—ฐ๐—ต๐—ถ๐˜๐—ฒ๐—ฐ๐˜ ๐—ณ๐—ผ๐—ฟ ๐Ÿญ ๐˜‚๐˜€๐—ฒ๐—ฟ ๐—ผ๐—ฟ ๐Ÿญ ๐—บ๐—ถ๐—น๐—น๐—ถ๐—ผ๐—ป

lnkd.in/gF_c4w8Z

๐Ÿต. ๐—ช๐—ต๐—ฎ๐˜ ๐—ถ๐˜€ ๐——๐—ผ๐—ฐ๐—ธ๐—ฒ๐—ฟ? ๐—•๐˜‚๐—ถ๐—น๐—ฑ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—™๐—ถ๐—ฟ๐˜€๐˜ ๐——๐—ผ๐—ฐ๐—ธ๐—ฒ๐—ฟ ๐—œ๐—บ๐—ฎ๐—ด๐—ฒ

lnkd.in/g2awvdeC

8 months ago | [YT] | 4

DataSense

๐Ÿš€ ๐—Ÿ๐—ฎ๐˜‚๐—ป๐—ฐ๐—ต๐—ถ๐—ป๐—ด ๐—ฎ ๐—›๐—ฎ๐—ป๐—ฑ๐˜€-๐—ข๐—ป ๐—ช๐—ผ๐—ฟ๐—ธ๐˜€๐—ต๐—ผ๐—ฝ: ๐—•๐˜‚๐—ถ๐—น๐—ฑ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—ข๐˜„๐—ป ๐—˜๐—ป๐˜๐—ฒ๐—ฟ๐—ฝ๐—ฟ๐—ถ๐˜€๐—ฒ ๐—”๐—œ ๐—–๐—ต๐—ฎ๐˜๐—ฏ๐—ผ๐˜ ๐˜„๐—ถ๐˜๐—ต ๐—ฆ๐—บ๐—ฎ๐—ฟ๐˜ ๐—–๐—ฎ๐—ฐ๐—ต๐—ถ๐—ป๐—ด!


LLMs are powerfulโ€”but theyโ€™re ๐˜€๐—น๐—ผ๐˜„ ๐—ฎ๐—ป๐—ฑ ๐—ฒ๐˜…๐—ฝ๐—ฒ๐—ป๐˜€๐—ถ๐˜ƒ๐—ฒ when every query hits the model.

Letโ€™s change that.

In this 2-day weekend workshop, youโ€™ll build a production-ready chatbot that:

โœ… Answers user queries via LLM

โœ… Caches similar questions using semantic similarity (FAISS/Pinecone)

โœ… Avoids redundant LLM calls

โœ… Is deployed using FastAPI, Docker, and GitHub Actions


๐Ÿ’ก Whether youโ€™re building internal Q&A systems, customer support bots, or knowledge assistantsโ€”this is built for you.

๐ŸŽฏ ๐—ฅ๐—ฒ๐—ด๐—ถ๐˜€๐˜๐—ฒ๐—ฟ ๐—ป๐—ผ๐˜„: topmate.io/datasense/1479867

๐ŸŽ๐—™๐—ถ๐—ฟ๐˜€๐˜ ๐Ÿญ๐Ÿฌ ๐˜‚๐˜€๐—ฒ๐—ฟ๐˜€ ๐—ด๐—ฒ๐˜ ๐Ÿฎ๐Ÿฌ% ๐—ข๐—™๐—™ ๐˜„๐—ถ๐˜๐—ต ๐—ฐ๐—ผ๐—ฑ๐—ฒ ๐—–๐—”๐—–๐—›๐—˜

#AI #Chatbots #LLM #FastAPI #Docker #Langchain #SemanticCaching #VectorDB #EnterpriseAI #PythonWorkshop #GitHubActions #LLMApps

10 months ago | [YT] | 1